KEMA Labs

KEMA TYPE TEST CERTIFICATE OF ENVIRONMENTAL PERFORMANCE

Object	Remot	te terminal unit			1070-20
Туре	RTU19 RTU19	94-F02-CP22-IA21-IB21-PA 94-F02-CP22-IA23-IB21-PA	03-PB03-D02	Serial No.	TEL-6311-1045 TEL-6311-1046 TEL-6311-1047 TEL-6396-1098
Rated input volt	age	110 - 220 Vac 110 - 220 Vdc	Ethernet p	ports (SFP-copper)) 3 not installed
Mechanical class Device reliability EMC immunity l	s / class ocation	G/H/P	Optical po Serial port EMC emis	rts :s sion class	3 installed 4 A
Manufacturer		Controles S.A., Av. Rivera 3314, 11300, M	1ontevideo, Ur	ruguay ^{*)}	
Client		Controles S.A., Av. Rivera 3314, 11300, Montevideo, Uruguay			
Tested by		KEMA B.V., Klingelbeekseweg 195, Arnhem, The Netherlands			
Date of tests		8 October 2019 to 21 May	y 2020		OS

The object, constructed in accordance with the description, drawings and photographs incorporated in this Certificate, has been subjected to the series of proving tests in accordance with the applicable type test requirements of

IEC 61850-3:2013

The results are shown in the record of proving tests and the oscillograms attached hereto. The values obtained and the general performance are considered to comply with the above standard(s) and to justify the ratings assigned by the manufacturer as listed on page 8.

This Certificate applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the Manufacturer. *) as declared by the manufacturer

This Certificate consists of 180 pages in total.

KEMA B.V.

Bas Verhoeven Director, High-Voltage Laboratory

Arnhem, 23 June 2020

INFORMATION SHEET

1

KEMA Type Test Certificate

A KEMA Type Test Certificate contains a record of a series of (type) tests carried out in accordance with a recognized standard. The object tested has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by KEMA Labs. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The Certificate contains the essential drawings and a description of the object tested. A KEMA Type Test Certificate signifies that the object meets all the requirements of the named subclauses of the standard. It can be identified by gold-embossed lettering on the cover and a gold seal on its front sheet. The Certificate is applicable to the object tested only. KEMA Labs is responsible for the validity and the contents of the Certificate. The responsibility for conformity of any object having the same type references as the one tested rests with the manufacturer.

Detailed rules on types of certification are given in KEMA Labs' Certification procedure applicable to KEMA Labs.

2

KEMA Report of Performance

A KEMA Report of Performance is issued when an object has successfully completed and passed a subset (but not all) of test programmes in accordance with a recognized standard. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The report is applicable to the object tested only. A KEMA Report of Performance signifies that the object meets the requirements of the named subclauses of the standard. It can be identified by silver-embossed lettering on the cover and a silver seal on its front sheet.

The sentence on the front sheet of a KEMA Report of Performance will state that the tests have been carried out in accordance with The object has complied with the relevant requirements.

3 KEMA Test Report

A KEMA Test Report is issued in all other cases. Reasons for issuing a KEMA Test Report could be:

- Tests were performed according to the client's instructions.
- Tests were performed only partially according to the standard.
- No technical drawings were submitted for verification and/or no assessment of the condition of the object after the tests was performed.
- The object failed one or more of the performed tests.

The KEMA Test Report can be identified by the grey-embossed lettering on the cover and grey seal on its front sheet.

In case the number of tests, the test procedure and the test parameters are based on a recognized standard and related to the ratings assigned by the manufacturer, the following sentence will appear on the front sheet. The tests have been carried out in accordance with the client's instructions. Test procedure and test parameters were based on If the object does not pass the tests such 2ehavior will be mentioned on the front sheet. Verification of the drawings (if submitted) and assessment of the condition after the tests is only done on client's request.

When the tests, test procedure and/or test parameters are not in accordance with a recognized standard, the front sheet will state the tests have been carried out in accordance with client's instructions.

4 Official and uncontrolled test documents

The official test documents of KEMA Labs are issued in bound form. Uncontrolled copies may be provided as a digital file for convenience of reproduction by the client. The copyright has to be respected at all times.

REVISION OVERVIEW

Rev. No	Date of issue	Reason for issue
0	23 June 2020	First issue

- 4 -

TABLE OF CONTENTS

Information sheet2		
Revision overview		
Table of contents4		
1	Summary	7
2	Identification of the object tested	8
2.1	Ratings/characteristics of the object tested	8
2.2	Description of the object tested	9
2.3	Product Information	11
2.3.1	RTU194	11
2.3.2	Module PWR: RTU194-FUE2	11
2.3.3	Module CPU: RTU194-CPU22	11
2.3.4	Module IO2: RTU194-GIO	12
2.3.5	Module POT2: RTU194-POT	12
2.3.6	Module FRENTE: RTU194-DIS2	12
2.4	List of cables	13
2.5	Auxiliary Equipment List	13
2.6	List of drawings	14
2.7	Photographs of test object	15
3	General information	16
3.1	The tests were witnessed by	16
3.2	The tests were carried out by	16
3.3	Subcontracting	16
3.4	Laboratorium environmental conditions	16
3.5	Measurement uncertainty	16
3.6	Instruments used	17
3.7	Standards	17
4	Test arrangement	18
4.1	Connection Diagram	18
4.2	Auxiliary Equipment	18
4.3	Performance observation	20
5	Risk assessment	23
6	Marking and documentation	24
7	Packaging	25
8	Dimensions of structure	29
9	Product safety	

9.1	Inspection	31
9.1.1	Pre-inspection	31
9.1.2	Visual and functional inspection	31
9.2	Document references	31
9.3	Clearances and creepage distances	32
9.3.1	Measurements	34
9.4	IP rating test	64
9.5	Impulse voltage test	66
9.6	Dielectric voltage test	69
9.7	Protective bonding resistance	72
9.8	Flammability of insulating materials, components and fire enclosures	73
9.9	Single-fault condition	76
10	Electromagnetic compatibility	78
10.1	Inspection	78
10.1.1	Pre-inspection	78
10.1.2	Visual and functional inspection	78
10.2	Radiated emission	79
10.3	Conducted emission	85
10.4	Electrostatic discharge	95
10.5	Radiated interference	99
10.6	Electrical fast transient	101
10.7	Slow damped oscillatory wave	104
10.8	Surge	107
10.9	Conducted disturbance induced by radio-frequency fields	110
10.10	Power frequency magnetic field	113
10.11	Mains frequency voltage immunity	115
10.12	Voltage dips and voltage interruptions on power supply voltage	118
10.13	Voltage ripple on DC power supply voltage	121
11	Energizing quantities	125
11.1	Burden for AC power supply	125
11.2	Burden for DC power supply	127
11.3	Inrush current	128
11.4	Burden for binary input	132
12	Climatic environment	133
12.1	Inspection	133
12.1.1	Pre-inspection	133
12.1.2	Visual and functional inspection	133
12.2	Photograph of test arrangement	134
12.3	Climatic environmental tests	135
12.3.1	Dry-heat test - operational	135
12.3.2	Cold test - operational	136

KEMA Labs

12.3.3	Dry-heat test at maximum storage temperature	137
12.3.4	Cold test at minimum storage temperature	138
12.3.5	Change of temperature test	139
12.3.6	Damp-heat steady-state test	140
12.3.7	Damp heat cyclic (12 h + 12 h) test	141
12.4	Measurement of insulation resistance	142
12.5	Dielectric voltage test after climate tests	145
12.6	Protective bonding resistance test after damp-heat environmental test	147
13	Mechanical environmental condition tests	149
13.1	Inspection	149
13.1.1	Pre-inspection	149
13.1.2	Visual and functional inspection	149
13.2	Photographs of test arrangement	150
13.3	Vibration response test	153
13.4	Vibration endurance test	155
13.5	Shock response test	156
13.6	Shock withstand test	157
13.7	Bump test	158
13.8	Single axis sine sweep seismic test	159
14	Enclosure protection	161
15	Photographs of printboards	
16	Photographs of changes to the test object	174
17	Measurement uncertainty	
18	List of instruments used	
18.1	EMC equipment	179
18.2	Mechanical tests	180
18.3	Climate tests	180
18.4	Measurement equipment	180

- 6 -

1 SUMMARY

By order of the client type tests according to IEC 61850-3 have been performed on the test object.

Test / Measurement	Test result
Dimensions of structure and visual inspection	Passed
Functional requirements ¹	N/T ¹⁾
Product safety	Passed
Electromagnetic compatibility (EMC)	Passed
Burden tests	Passed
Climatic environmental conditions	Passed
Mechanical environmental conditions	Passed
Enclosure protection	Passed

¹⁾ Not Tested, the test object has been subjected to the environmental type test program only.

During the testing period the following changes on the test object were made:

- change 1: the GIO input circuits have been modified to comply with the EMC conducted disturbance inducted by radio-frequency fields immunity requirements;
- change 2: the GIO creepage distances have been increased to comply with the product safety distance creepage requirements;
- change 3; the dimensions of the enclosure have been changed to comply with the dimension requirements for 19" enclosures;
- change 4; the ventilation hole size and pattern at the bottom side of the enclosure has been modified to comply with the product safety fire enclose requirement;
- change 5; the user manual has been updated to reflect essential technical data according the documentation requirements;
- change 6; the plastic overlays (front and rear) have been modified to comply with the product safety markings requirements.

The changes on the test object have been documented in more detail in chapter 19 "Photographs of changes of the test object".

2 IDENTIFICATION OF THE OBJECT TESTED

2.1 Ratings/characteristics of the object tested

Rated auxillary voltage	110 – 220 Vac	
Input voltage range	88 - 250 Vac	
Rated auxillary voltage	110 – 220 Vdc	
Input voltage range	88 -250 Vdc	
Output contact continuous current 24/	748 Vdc option 21/22 6 A	
Output contact continuous current 110) Vdc option 21/22 5 A	
Output contact continuous current 220) Vdc option 21/22 1,5 A	
Output contact continuous current 24/	48 Vdc option 23 10 A	
Output contact continuous current 110) Vdc option 23 10 A	
Output contact continuous current 220) Vdc option 23 10 A	
Number of ethernet ports (copper SFP)	3 not installed	
Number of optical ports (optical SFP)	3	
Number of serial ports	4	
Number of digital inputs	80	
Number of digital outputs	20	
Voltage inputs (3 ph)	2	
Current inputs (3 ph)	2	
Timing input IRIG-B	1 pps	
Sensitive current inputs	8	
Maximum operating temperature	+70 °C	
Minimum operating temperature	-20 °C	
Maximum storage temperature	+85 °C	
Minimum storage temperature	-40 °C	
Classification		
IP-class	IP 2x	
Mechanical class	1	
EMC emission class	А	
Reliability class	2	
EMC immunity location	Power stations/	
	Medium voltage (MV)/	
	High-voltage (HV) substations /	
	Protected areas	
Signal connections	Local connections/	
	Field connections/	
	Connections to HV equipment/	
	Telecommunication/	
C	onnections within a protected area	
Over voltage category	III see TRF E132067-A139-CB-1	
Pollution degree	2 see TRF E132067-A139-CB-1	
Insulation type	Basic/reinforced/double/functional see TRF E132067-A139-CB-1	

2.2 Description of the object tested

Manufacturer (as stated by the client)	
--	--

Туре

Object

Controles, Montevideo, Uruguay RTU194-F02-CP22-IA21-IB21-PA03-PB03-D02 RTU194-F02-CP22-IA23-IB21-PA03-PB03-D02 Remote terminal unit

IED RTU194, Sample A.1, Serial No. TEL-6311-1045

Slot	Module	Serial No.
1	RTU194-FUE2	TEL-5903-0004
2	RTU194-CPU22	TEL-6262-0123
		TEL-6125-0855
3	RTU194-GIO	
	IA:	TEL-5900-1780 (21-BOR)
	IB:	TEL-5900-1781 (21-BOR)
4	RTU194-POT	
	PA:	TEL-6077-1910
	PB:	TEL-6077-1911
5	RTU194-DIS2	TEL-5899-0062

IED RTU194, Sample A.2, Serial No. TEL-6311-1046

Slot	Module	Serial No.
1	RTU194-FUE2	TEL-5903-0064
2	RTU194-CPU22	TEL-6262-0124
		TEL-6125-0857
3	RTU194-GIO	
	IA:	TEL-6263-2027 (23-BOR)
	IB:	TEL-5900-1786 (21-BOR)
4	RTU194-POT	
	PA:	TEL-5901-1888
	PB:	TEL-5901-1889
5	RTU194-DIS2	TEL-5899-0004

IED RTU194, Sample A.3, Serial No. TEL-6311-1047 (with no overvoltage suppressors mounted)

Slot	Module	Serial No.
1	RTU194-FUE2	TEL-6312-0178
2	RTU194-CPU22	TEL-6262-0125
		TEL-6125-0858
3	RTU194-GIO	
	IA:	TEL-5900-1905 (21-BOR)
	IB:	TEL-5900-1906 (21-BOR)
4	RTU194-POT	
	PA:	TEL-5901-1768
	PB:	TEL-5901-1769
5	RTU194-DIS2	TEL-6078-0122

IED RTU194, Sample A.4, Serial No. TEL-6396-1098

Slot	Module	Serial No.
1	RTU194-FUE2	TEL-6261-0173
2	RTU194-CPU22 MPX module	TEL-6262-0176 TEL-6242-0885
3	RTU194-GIO IA: IB:	TEL-6263-2124 (23-BOR) TEL-5900-1782 (21-BOR)
4	RTU194-POT PA: PB:	TEL-6241-2106 TEL-6241-2107
5	RTU194-DIS2	TEL-6240-0174

2.3 **Product Information**

In this section information and references has been included about:

- circuit/schematic diagrams of all modules and boards;
- PCB drawings of all modules and boards;
- hardware and software versions/revisions of the printed circuit boards in the IED;
- complete list of all modules in each sample including identification codes, module description, hardware versions and software / firmware versions.

2.3	.1	RTU194

Product Name	RTU194
Product Model	F02-CP22-IA21-IB21-PA03-PB03-D02-BOR
	F02-CP22-IA23-IB21-PA03-PB03-D02-BOR
Product Revision	2.0
Bill of Material	RTU194_BOM_F02-CP22-IA21-IB21-PA03-PB03-D02_V2_0.pdf

2.3.2 Module PWR: RTU194-FUE2

Module Name	RTU194-FUE2
Module Model	02
Module Revision	1.0
Firmware/Software/OS	
PCB Version	1736 V1_0_0
Schematic File	RTU194-FUE2_Schematics_1736V1_0.pdf
PCB File	RTU194-FUE2_PCB_1736V1_0.pdf
Assembly File	RTU194-FUE2_Assembly_1736V1_0.pdf
Bill Of Material File	RTU194-FUE2_BOM_02_V1_0.pdf

2.3.3 Module CPU: RTU194-CPU22

Module Name	RTU194-CPU22
Module Model	01
Module Revision	1.1
Firmware/Software/OS	RTUQM 4.56
	QNX 6.5, runtime QNX6-506263
PCB Version	1675 V3_0_0 (Base)
	1629 V3_0_0 (MXP)
Schematic Files	RTU194-CPU22_Schematics_1675V3_0.pdf
	RTU194-MXP_Schematics_1629V3_0.pdf
PCB Files	RTU194-CPU22_PCB_1675V3_0.pdf
	RTU194-MXP_PCB_1629V3_0.pdf
Assembly File	RTU194-CPU22_Assembly_1675V3_0.pdf
	RTU194-MXP_Assembly_1629V3_0_0.pdf
Bill Of Material File	RTU194-CPU22_BOM_01_V1_1.pdf

Module Name	RTU194-GIO
Module Model	21-BOR
	23-BOR
Module Revision	1.4
Firmware/Software/OS	03.0410
PCB Version	1482 V3_1_0 (Base)
	1483 V3_1_0 (Sidecar)
Schematic Files	RTU194-GIO_Schematics_Base_1482V3_1.pdf
	RTU194-GIO_Schematics_Sidecar_1483V3_1.pdf
PCB Files	RTU194-GIO_PCB_Base_1482V3_1.pdf
	RTU194-GIO_PCB_Sidecar_1483V3_1.pdf
Assembly File	RTU194-GIO_Assembly_Base_1482V3_1_0.pdf
	RTU194-GIO_Assembly_Sidecar_1483V3_1_0.pdf
Bill Of Material File	RTU194-GIO_BOM_21-BOR_V1_4.pdf

- 12 -

2.3.4 Module IO2: RTU194-GIO

2.3.5 Module POT2: RTU194-POT

Module Name	RTU194-POT			
Module Model	03-BOR			
Module Revision	1.5			
Firmware/Software/OS	01.04PC			
PCB Version	1521 V2_2_0			
Schematic Files	RTU194-POT_Schematics_1521V2_2.pdf			
PCB Files	RTU194-POT_PCB_1521V2_2			
Assembly File	RTU194-POT_Assembly_1521V2_2.pdf			
Bill Of Material File	RTU194-POT_BOM_03-BOR_V1_5.pdf			

2.3.6 Module FRENTE: RTU194-DIS2

Module Name	RTU194-DIS2			
Module Model	02			
Module Revision	1.0			
Firmware/Software/OS	03.00			
PCB Version	1727 V6_0_1			
Schematic Files	RTU194-DIS2_Schematics_1727V6_0_1.pdf			
PCB Files	RTU194-DIS2_BOM_02_V1_0.pdf			
Assembly File	RTU194-DIS2_Assembly_1727V6_0_1.pdf			
Bill Of Material File	RTU194-DIS2_BOM_02_V1_0.pdf			

- 13 -

2.4 List of cables

ID	Qty	Length	Cable Name	Description				
C.1.S	2	1.5m	RTU194-PE-SHORT	1x6mm ² - yellow/green				
C.1.L	2	10m	RTU194-PE-LONG	1x6mm ² - yellow/green				
C.2.S	2	1.5m	RTU194-PWR-SHORT	3x1.5mm ² - red, blue, yellow/green				
C.2.L	2	10m	RTU194-PWR-LONG	3x1.5mm ² - red, blue, yellow/green				
C.3.S	2	1.5m	RTU194-POT-SHORT	6x4mm ² white + 4x1.5mm ² white				
C.3.L	2	10m	RTU194-POT-LONG	6x4mm ² white + 4x1.5mm ² white				
C.4.S	2	1.5m	RTU194-AI-SHORT	4 control cable screened grey				
				Each one has two cores 0.25mm ²				
C.4.L	2	10m	RTU194-AI-LONG	4 control cable screened				
				Each one has two cores 0.25mm ²				
C.5.S	2	1.5m	RTU194-DO-SHORT	10x1.5mm ² white				
C.5.L	2	10m	RTU194-DO-LONG	10x1.5mm ² white				
C.6.S	2	1.5m	RTU194-DI-SHORT	9x1.5mm ² white				
C.6.L	2	10m	RTU194-DI-LONG	9x1.5mm ² white				
C.7.S	2	1.5m	RTU194-IRIG-SHORT	Control cable screened grey, two cores 0.25mm ²				
C.7.L	2	10m	RTU194-IRIG-LONG	Control cable screened grey, two cores 0.25mm ²				
C.8.S	2	1.5m	RTU194-COM-SHORT	Control cable screened grey, four cores 0.14mm ²				
C.8.L	2	10m	RTU194-COM-LONG	Control cable screened grey, four cores 0.14mm ²				
C.9.L	2	10m	RTU194-FO-LONG	Multimode fibre optic Patch LC/SC				

2.5 Auxiliary Equipment List

ID	Qty	Description/Function	Manufacturer/ Model	Serial Number	User Manual
B.1	1	Satellite- Synchronized Clock	SEL / SEL 2407	2005201196	2407_IM_20130315.pdf
B.2	2	AC/DC Power Supply	Reign Power / LP 1100D-24MDA	RPL183000118 RPL183000106	LP1100D.pdf
B.3	2	Auxiliary input/output	Controles / RTU194-AUX-01	TEL-6313-0001 TEL-6313-0002	
B.4	2	Auxiliary COM	Controles / RTU115-F01-C01- 100-200-300- 400-500	TEL-6310-0058 TEL-6310-0059	RTU115_UserManual_R01.pdf
B.5	2	Ethernet Media Converter	TP-LINK / MC100CM(UN) Version 5.0	218A353002169 218A353002188	Media Converter Datasheet.pdf Media Converter Installation Guide.pdf
B.6	1	IP Test Enclosure	Controles / RTU194-IPE	TEL-6314-0001	

2.6 List of drawings

According to the client the following drawings and/or documents numbers refers. KEMA Labs has not verified these drawings and/or documents. Drawings have been used for reference/information purpose only.

Refer to paragraph 2.3 of this report for the relevant drawings.

2.7 Photographs of test object

3 GENERAL INFORMATION

3.1 The tests were witnessed by

NameCompanySantiago Lafon,Controles,Francisco AguerreMontevideo, Uruguay(8 to 11 October 2019)

3.2 The tests were carried out by

Name Mihai Bivolaru (9 to 11 October 2019), Gert van Wee (14 October 2019 to 21 May 2020) **Company** KEMA B.V., Arnhem, The Netherlands

3.3 Subcontracting

The following tests were subcontracted to DEKRA Certification B.V., Arnhem, the Netherlands:

- measurement of radiated emission in accordance with IEC 61850-3 and CISPR22;
- radiated, radio-frequency electromagnetic field immunity test in accordance with IEC 61850-3 and IEC 61000-4-3.

The following tests were subcontracted to Sebert Trillingstechniek B.V., Bergschenhoek, the Netherlands:

- vibration response and endurance test in accordance with IEC 60255-21-1;
- shock response and withstand test in accordance with IEC 60255-21-2;
- bump test in accordance with IEC 60255-21-2;
- seismic test in accordance with IEC 60255-21-3.

3.4 Laboratorium environmental conditions

Tests have been performed in a controlled laboratory environment, where the environmental conditions are maintained within the applicable ranges.

Ambient temperature	15 °C to 25 °C
Relative Humidity	45% to 75%
Atmospheric pressure	86 kPa (860 mbar) to 106 kPa (1060 mbar)

When a condition has direct influence on a test, the value of the condition will be presented explicitly.

3.5 Measurement uncertainty

A table with measurement uncertainties is enclosed in this Certificate. Unless otherwise stated, the measurement uncertainties of the results presented in this Certificate are as indicated in that table.

3.6 Instruments used

A detailed list with instruments used is enclosed in this Certificate.

3.7 Standards

The product standard IEC 61850-3 (2013-12) refers to documents, in whole or in part, these documents are normatively referenced to in this product standard and these documents are indispensable for its application. For dated references, only the edition cited applies. For undated references the latest edition of the referenced document (including any amendments) applies. KEMA Labs will use the latest edition of the referenced documents (including any amendments) in all cases, also in the cases reference is made to dated editions.

4 TEST ARRANGEMENT

A general test set-up is made by connecting the test object the auxiliary equipment according to the diagram presented below.

4.1 Connection Diagram

4.2 Auxiliary Equipment

B.1 – Satellite-Synchronized Clock SEL-2407

B.1 is used as IRIG-B clock source. To really synchronize to satellite clocks, antenna should be connected, but it has be used without antenna for RTU194 functional IRIB-B input port test purposes (no GPS signal available in the test lab).

B.2 – AC/DC Power Supply LP 1100D-24MDA

B.2 it's a standard AC/DC switching power supply, required to power B.4.

B.3 – Auxiliary input/output RTU194-AUX-01

This equipment has been developed just to simulate real connections to RTU194. It has three modules:

- RTU194-AUX-ED_SD for digital connections;
- RTU194-AUX-EA for dc current connections;
- RTU194-AUX-POT for ac voltage and current connections.

RTU194-AUX-ED_SD connection diagram:

For example, if RTU194 (A) closes digital output S01, digital input E01 will be excited by B.3. It is a loop-back connection.

Related documentation about this module:

- RTU194-AUX-EDSD_BOM_1723V1_0.pdf;
- RTU194-AUX-EDSD_Layout_1723V1_0.pdf;
- RTU194-AUX-EDSD_Schematics_1723V1_0.pdf.

Analog Input connection diagram:

The auxiliary equipment B.3 excites each channel with a different fixed DC current source. Related documentation about this module:

- RTU194-AUX-EA_BOM_1722V1_0.pdf;
- RTU194-AUX-EA_Layout_1722V1_0.pdf;
- RTU194-AUX-EA_Schematics_1722V1_0.pdf.

POT connection diagram:

The auxiliary equipment B.3 excites all voltage channels in a parallel connection and all current channels in a serial connection.

Related documentation about this module:

- RTU194-AUX-POT_BOM_1721V1_0.pdf;
- RTU194-AUX-POT_Layout_1721V1_0.pdf;
- RTU194-AUX-POT_Schematics_1721V1_0.pdf.

<u>B.4 – RTU115</u>

B.4 is used as an Intelligent Electronic Device (IED) with serial communication port. It has been configured as IEC 60870-5-101 slave device.

<u>B.5 – Ethernet Media Converter MC100CM</u>

B.5 is provided to enable connection of EUT Ethernet port (100Base-FX) to SCADA PC.

B.6 – IP Test Enclosure

This enclosure is provided to be used for the IP test.

4.3 Performance observation

EUT is configured to:

- Communicate as IEC 60870-5-104 slave to SCADA Mirage (Ethernet port test).
- Local operation from Display panel and buttons (Display test).
- Time synchronization with Satellite Synchronized Clock B.2 (IRIB-B port test).
- Communicate as IEC 60870-5-101 master to RTU115 B.4 (COM port test).
- Interconnect some digital input/output with RTU194-AUX B.3. Every change in RTU194 digital outputs SD01-SD05 will return as events in digital inputs ED01-ED05 (Digital input/output test). An internal PLC automatism periodically change digital output SD01.
- Receive and process DC current inputs from RTU194-AUX B.3 (DC current inputs).
- Receive and process AC current/voltage inputs from RTU194-AUX B.3 (AC current/voltage inputs).
- Digital output control for burden test (50% of the outputs activated).

- 21 -

SCADA Mirage screen capture

MIRAGE SCADA/HMI - Consola - Pruebas INTI	Q* Q*	
<u>C</u> onsola Elementos <u>V</u> isuales <u>H</u> erramientas <u>M</u> ímico	s <u>A</u> yuda	
	PROJECT REFERENCE 72124567.Q.5	SUPERVISION
CONTROLES	TEST OBJECT: RTU194-F02-CP22-IA21-IB21-PA03-PB03-D02	Link RTU (104) 🛛 🔵
	TEST PROGRAM: IEC 61850-3 Ed.2 (2013)	Link 115 (101) OCON 20493
	STARTING DATE: 7th of October 2019	Bus485
)	IRIG O
102 A	IO2 B	Display 🔍 REMOTE
ED01 🔵 ED09 O ED17 O ED25	O ED33 O ED41 O ED49 O ED57 O ED65 O ED7	73 O POT2 A
ED02 O ED10 O ED18 O ED26	O ED34 O ED42 O ED50 O ED58 O ED66 O ED7	
ED03 O ED11 O ED19 O ED27	O ED35 O ED43 O ED51 O ED59 O ED67 O ED7	75 0
ED04 O ED12 O ED20 O ED28	O ED36 O ED44 O ED52 O ED60 O ED68 O ED7	76 O IB 0
ED05 O ED13 O ED21 O ED29	O ED37 O ED45 O ED53 O ED61 O ED7	
ED06 O ED14 O ED22 O ED30	ED38 ED46 ED54 ED62 ED70 ED70	78 0
ED07 O ED15 O ED23 O ED31	O ED39 O ED47 O ED55 O ED63 O ED71 O ED7	79 O
ED08 O ED16 O ED24 O ED32	ED40 ED48 ED56 ED64 ED72 ED8	
SD01 💿 🧶 SD06 🔾	SD11 O SD16 O	POIZB
	1 1727 EA05 0.00	VA 43 IA 64
	2 14.57 EA06 0.00	VB 42 IB 64
EAC	3 8.81 EA07 0.00	VC 42 IC 64
SD04 O SD09 O EAO	4 0.00 SD14 O SD19 O EA08 0.00	
SD05 O SD10 O	SD15 O SD20 O	F 50.04
Listo		Usuario: ADMIN 🔴 🍥 💮 ;

- Project Panel: general static information
- Supervision Panel:
 - Mirage-RTU194 link state.
 - RTU194-RTU115 link state and RTU115 counter value.
 - Bus485 internal state.
 - o IRIG-B time state.
 - Display link state and Local/Remote state.
- IO2 A Panel
 - Digital Inputs state from ED01 to ED40.
 - \circ Digital Output state from SD01 to SD10. User can operate them.
 - DC Analog Inputs from EA01 to EA04.
- IO2 B Panel
 - Digital Inputs state from ED41 to ED80.
 - Digital Output state from SD11 to SD20. User can operate them.
 - DC Analog Inputs from EA05 to EA08.
- POT2 A Panel: Voltage RMS, Current RMS and Frequency measurements from PA module.
- POT2 B Panel: Voltage RMS, Current RMS and Frequency measurements from PB module.

- 22 -

1070-20

Local Display HMI:

	SUPERVISI	ON					DIGITAL	INPUT	S		
LINK MIRAGE (IEC (60870-5-104, ETH)		OK								
LINK RTU115 (IEC 6	0870-5-101, COM2	2)	OK	E01 🔴	E11 🔿	E21 🔿	E31 🔘	E41 🔿	E51 🔿	E61 🔿	E71 🔘
BUS 485 102/POT2 S	TATE:		OK	E02 🔿	E12 🔿	E22 🔿	E32 🔿	E42 🔿	E52 🔿	E62 🔿	E72 🔿
TIME SYNC (IRIG-B)	:		ОК *	E03 🔿	E13 🔘	E23 🔿	E33 🔿	E43 🔿	E53 🔿	E63 🔿	E73 🔿
				E04 🔿	E14 🔘	E24 🔘	E34 🔘	E44 🔿	E54 🔿	E64 🔘	E74 🔿
ED01 🔘	VA	0.0		E05 🔿	E15 🔘	E25 🔘	E35 🔘	E45 🔿	E55 🔿	E65 🔿	E75 🔿
SD01	IA	0.0		E06 🔿	E16 🔿	E26 🔘	E36 🔿	E46 🔿	E56 🔿	E66 🔘	E76 🔘
EA01 17.28	ſ	0.00		E07 🔿	E17 🔘	E27 🔘	E37 🔘	E47 🔿	E57 🔿	E67 🔿	E77 🔿
				E08 🔿	E18 🔿	E28 🔿	E38 🔿	E48 🔿	E58 🔿	E68 🔿	E78 🔿
CONT115 208	79			E09 🔿	E19 🔿	E29 🔿	E39 🔿	E49 🔿	E59 🔿	E69 🔿	E79 🔿
				E10 🔿	E20 🔿	E30 🔘	E40 🔿	E50 🔿	E60 🔿	E70 🔿	E80 🔿
LOCAL TIME:	14/08/2000	0 14:21:40		36							

DIGITAL OUTPUTS		SYSTEM INFORMATION		
S01 ●	\$11 ○	NODO: RTU194		
S02 ○	\$12 ○	RTUQM: 4.56.0.0		
S03 ○	\$13 ○	MEMODIA (LIBPE / TOTAL): 172.5 / 282.1 MB		
505 ⊖	\$15 ⊖	DISCO (LIBRE / TOTAL): 13266.2 / 13968.1 MB		
505 ⊖	\$15 ⊖	VELOCIDAD CPU: 720.0 MHz		
506 ()	S16 ⊖	CARGA DE CPU: 17 %		
507 ()	S17 ⊖	TIEMPO ON: 0d 00h 14m 12s		
508 ()	S18 ⊖	DIRECCION IP EN0: 192.168.0.222		
500 () 509 () 510 ()	s19 ⊖ s20 ⊖	DIRECCION IP EN1: 10.0.0.222		

CONTROLES S.A. Ref: 72124567.Q.5

October 2019

Av. Rivera 3314 11300, Montevideo Uruguay

CONTROLES S.A.

Tel: (+598) 2622 0651 www.controles.com

- Supervision Panel:
 - Mirage-RTU194 link state.
 - RTU194-RTU115 link state and RTU115 counter value.
 - \circ Bus485 internal state.
 - IRIG-B time state.
 - Local Time.
 - ED01, SD01, EA01, VA1, IA1 and f values.
- Digital Inputs Panel: ED01 to ED80 digital input states.
- Digital Outputs Panel: SD01 to SD20 digital outputs states. User can operate them.
- System Information: general information about CPU, memory, IP address ...
- Project Information.
- Institutional Information.

5 RISK ASSESSMENT

Subclause 7.6 in IEC 61850-1 describes that testing a product which is part of a product family shall be considered sufficient to cover the entire product family provided a documented risk assessment is carried out to determine which type tests are valid and which tests need to be repeated on the rest of the product family.

A risk assessment was not required because the type testing concerns a single product type.

6 MARKING AND DOCUMENTATION

Standard and date

Standard	IEC 61850-3, subclause 6.1 and 6.2
Test date	3 March to 21 May 2020

Characteristic test data

Serial number	Sample A.1, Serial No. TEL-6311-1045
Documentation	 User manual; RTU194_UserManual_R07.pdf
	Document ID: 1248_GEN_09_01
	Issue date: 20/05/2019
	Document revision: 07
	Hardware version: 2.0
	 Safety manual; RTU194_SafetyInformation_R06.pdf,
	Document ID: 1248_GEN_09_07
	Issued Date: 16/08/2019
	Document Revision: 06
	Hardware Version: 2.0
	 Specification sheet; 1248_GEN_07_01_R14 - Folleto RTU194V2, Rev 14
	12/03/19

Observations

- The markings on the front and rear plastic overlays have been changed for the purpose to comply with the markings requirements of the standard. Refer to chapter 16.
- The documentation has been changed for the purpose to comply with the documentation requirments of the standard. The updated revision is revision 07.

Requirement

- The markings on the test object shall comply with the requirements of IEC 61850-3, subclause 6.1.
- The documentation of the test object shall comply with the requirements of IEC 61850-3, subclause 6.2.

Result

The provided documentation and markings meet the marking and documentation requirements.

- 25 -

7 PACKAGING

Standard and date

Standard	IEC 61850-3, subclause 6.3
Test date	9 October 2019

Requirement

The manufacturer shall ensure that the equipment is suitably packaged to withstand, without damage, reasonable handling and environmental conditions appropriate to the method(s) of transportation to the user's delivery address.

A visual inspection should be made by the user to check that the equipment has not been damaged during transportation.

Result

- The packaging meets the packaging requirements.
- No visual damage to the packaging and the equipment has been observed.

Photograph of the packaging

1070-20

8 DIMENSIONS OF STRUCTURE

Standard and date

Standard	IEC 61850-3, subclause 6.4
{Basic standard	IEC 60297-3-101
Test date	14 February, 8 April and 19 May 2020

For 19" enclosures, 4U height;

Item	Unit	Measured	Specified by the manufacturer	Required by IEC 60297-3-101	
rack height	mm	177,00 ¹⁾	-	H1	177,00 ± 0,4 (4U)
width front, over the mounting brackets	mm	482,60 ¹⁾	-	-	482,6 ± 0,4
rack depth	mm	213,94	200,00 ± 0,4	-	-
width inside rack	mm	N/A	-	-	>426,72
width behind the brackets, over the mounting of the bracket	mm	441,97	-	-	≤ 449
rack mounting hole positions	mm	101,25	-	H2	101,60 ± 0,4 (4U)
rack mounting hole positions	mm	37,70 ¹⁾	-	H3	37,70 ± 0,4 (4U)
rack mounting hole positions	mm	N/A	-	H4	76,20 ± 0,4 (6U)
vertical aperture opening for plug-in units	mm	N/A		H5	≥ 156,45 (4U)
Mounting center distance for plug-in units, front panels, backplanes and connector supports.	mm	N/A		H6	166,95 ± 0,2 (4U)
Plug-in unit and printed board guidance height.	mm	N/A		H7	144,65 + 0,5, -0 (4U)
Plug-in unit front panel height.	mm	N/A		H8	173,00 ± 0,15 (4U)
Vertical plug-in unit front panel or backplane onto subrack mounting dimensions	mm	N/A		H9	166,95 ± 0,2 (4U)
Printed board height or plug-in unit into subrack guidance height.	mm	N/A		H10	144,45 +0, -0,3 (4U)
Mounting hole width dimension	mm	10,25	-	-	10,3 ± 0,4
Mounting hole height dimension	mm	10,17	-	-	10,3 ± 0,4
Mounting hole position	mm	13,30	-	-	13,5 ± 0,4

Tolerances

See references to IEC 60297-3-101 in the table above.

Notes

- The manufactures enclosure contents (PCB, modules) are custom made. The enclosure is not to be used for mounting of 19"based modules.
- ¹⁾ Compliance checked by inspection of the mechanical drawing.

Observations

The measured/insop dimensions were within the specified dimensions.

Result

The object passed the test.

9 PRODUCT SAFETY

9.1 Inspection

9.1.1 Pre-inspection

The pre-inspection is performed to verify that the test object is in operating state. The pre-inspection is carried out previous to the test procedure.

The communication with the maintenance computer is verified. Signals are simulated to verify the functioning and operation with the specified performance specification for the following inputs and outputs:

- analogue inputs (CT, VT, sensitive current);
- digital inputs (binary inputs);
- contact outputs (binary outputs);
- timing port (IRIG-B);
- data communication (optical, RS232).

9.1.2 Visual and functional inspection

No visual and/or functional inspection is required after the product safety tests. In general, the test object shall remain safe regarding the spread of fire or risk of having an electric shock. Specific assessment/test requirements are listed at each specific test.

9.2 Document references

For the purpose of the safety assessment the report(s) listed have been used for reference purpose whenever applicable;

• Test report IEC 60950-1, TRF E132067-CB-1, issue date 2016-05-12

9.3 Clearances and creepage distances

Standard and date

Standard	IEC 61850-3, subclause 6.6.1
Test date	21 April and 11 May 2020

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
PCB Coating	No

Power supply module (PSU, filter board);

<u>Creepage distances;</u> Nominal rated insulation voltage or working voltage: ≤**300Vac / 300 Vdc.**

Requirement IEC 61850-3; Category; OVC-III, PD2. IEC 61850-3 refers to IEC 60255-27 Annex C. for creepage and clearance requirements.

Creepage requirement for functional, basic or supplementary insulation.

- 1. Not coated PCB; creepage distance = 3mm (table C.6).
- 2. For double or reinforced insulation; creepage distance = 5,5 mm (table C.10).

Clearance requirement for basic functional or supplementary insulation

- 1. Clearance; 3mm (table C.6).
- 2. For double or reinforced insulation; clearance distance = 5,5 mm (table C.10).

GIO module (BI and BO);

<u>Creepage distances;</u> Nominal rated insulation voltage or working voltage: ≤**300Vac (BO) / 300 Vdc (BI).**

Requirement IEC 61850-3; Category; OVC-III, PD2. IEC 61850-3 refers to IEC 60255-27 Annex C. for creepage and clearance requirements.

Creepage requirement for functional, basic or supplementary insulation.

- 1. Not coated PCB; creepage distance = 3mm (table C.6).
- 2. For double or reinforced insulation; creepage distance = 5,5 mm (table C.10).

Clearance requirement for basic functional or supplementary insulation

- 1. Clearance; 3mm (table C.6).
- 2. For double or reinforced insulation; clearance distance = 5,5 mm (table C.10).

- 33 -

POT module (VT and CT);

Creepage distances;

Nominal rated insulation voltage or working voltage: ≤300Vac / 300 Vdc.

Requirement IEC 61850-3; Category; OVC-III, PD2. IEC 61850-3 refers to IEC 60255-27 Annex C. for creepage and clearance requirements.

Creepage requirement for functional, basic or supplementary insulation.

- 1. Not coated PCB; creepage distance = 3mm (table C.6).
- 2. For double or reinforced insulation; creepage distance = 5,5 mm (table C.10).

Clearance requirement for basic functional or supplementary insulation

- 1. Clearance; 3mm (table C.6).
- 2. For double or reinforced insulation; clearance distance = 5,5 mm (table C.10).

CPU-module (IRIG-B, RS232);

Nominal rated insulation voltage or working voltage: ≤50Vac / 50 Vdc.

Requirement IEC 61850-3; Category; OVC-III, PD2. IEC 61850-3 refers to IEC 60255-27 Annex C. for creepage and clearance requirements.

Creepage requirement for functional, basic or supplementary insulation.

- 1. Not coated PCB; creepage distance =0,15mm (table C.6).
- 2. For double or reinforced insulation; creepage distance = 0,5 mm (table C.10).

Clearance requirement for basic functional or supplementary insulation

- 1. Clearance; 0,15mm (table C.6).
- 2. For double or reinforced insulation; clearance distance = 0,5 mm (table C.10).

9.3.1 Measurements

PSU module

Creepage PSU between HLV ELV at air gap

IEC 60255-27 working voltage; 300 V (OVC II, double/reinforced insulation)

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit to secondary circuit	5,50	6,28	PASS

1070-20

Creepage PSU; accross opto coupler

IEC 60255-27 working voltage; 300 V (OVC II, double/reinforced insulation)

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit to secondary circuit; across onto coupler	5,50	7,83	PASS

Creepage PSU module; creepage across transient limiter

IEC 60255-27 working voltage; 300 V

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit, across transient limiter to PE	3,00	8,69	PASS

Creepage PSU module; across Y capacitor C107

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit, across	3,00	6,68	PASS
transient limiter to PE			

Power supply filter board

Creepage filter board N to PE pcb track

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit, Power supply filter board; N to PE tracks	3,00	5,26	PASS

Creepage filter board across the AC mains power input connections

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit; between the AC mains power input connections	3,00	4,65	PASS

Creepage filter board, across the filter capacitor C1

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit; across the filter capacitor C1	3,00	5,49	PASS

Creepage filter board, across the filter capacitor C2

Measurement point	Required	Measured	Verdict
	mm	mm	
Primary circuit; across the filter capacitor C2	3,00	5,49 mm	PASS

- 42 -

1070-20

GIO (BI/BO) module, BI

Creepage BI; across C492 (capacitor to GND)

Measurement point	Required	Measured	Verdict
	mm	mm	
Binary input; C192 to GND	3,00	3,01	PASS

Creepage BI; across C192 and from C192 to GND

IEC 60255-27 working voltage; 300 V

Measurement point	Required	Measured	Verdict
	mm	mm	
Binary input; across C192	3,00	2,99	PASS
Binary input; from C192 to GND	3,00	4,52 ¹⁾	PASS

Note

¹⁾ new CAD data received; the distance has been increased from 2,94 mm to 4,52 mm.

Modified layout GIO 1483 top layer.

Detailed view BI

GIO (BI/BO) module, BO

Top view (GIO provided with relays PT571024)

Bottom view (GIO provided with relays PT571024)

Top view (GIO provided with relays J2AK024W)

Bottom view (GIO provided with relays J2AK024W), the red circles refer to detailed views and related creepage measurements (PCB before the modification). Some distances were to small. The manufacturer performed a pcb redesign.

Below graphs of the modified pcb design have been presented. Measurements have been performed with the CAD design software.

<u>Creepage measurements BO module, variant with relays J2AK024W;</u>

Detailed view bottom layer GIO, the blue circle indicates the minimum creepage distance.

KEMA Labs

1070-20

Detailed view top layer GIO, the blue circle indicates the minimum creepage distance.

Measurement point	Required	Measured	Verdict
	mm	mm	
Binary output; relay	3,00	3,32 ¹⁾	PASS

IEC 60255-27 working voltage; 300 V

Note

¹⁾ 3,32 mm is the minimum distance in the modified layout between the independent cicuits, see above detailed view of the measurements (with help of the pcb CAD design software).

<u>Creepage measurements BO module, variant with relays, PT571024/9-1419111-3;</u>

IEC 60255-27 working voltage; 300 V

Measurement point	Required	Measured	Verdict
	mm	mm	
Binary output; all relays	3,00	3,00	PASS

Detailed view, creepage BO module at relay K291 w.r.t. ground stud.

Measurement point	Required	Measured	Verdict
	mm	mm	
Binary output; relay K291	3,00	3,05	PASS
w.r.t. GND (mounting stud)			

Creepage relay output; across C200 at relay K210

Measurement point	Required	Measured	Verdict
	mm	mm	
Binary output; all relay	3,00	5,95	PASS

Creepage GIO module; across C281 at relay output

Measurement point	Required	Measured	Verdict
	mm	mm	
Binary output; all relay	3,00	3,41	PASS

POT module

Top view (1)

Top view (2)

Bottom view

Detailed view, creepage POT module; across C73

Measurement point	Required	Measured	Verdict
	mm	mm	
POT module; C73	0,50	2,90	PASS

Creepage between CT/VT circuits POT module

Measurement point	Required	Measured	Verdict
	mm	mm	
POT module, between CT and VT circuits	0,50	3,49	PASS

Sensitive current module

Creepage sensitive current module; across C102

IEC 60255-27 working voltage; 50 V

Measurement point	Required	Measured	Verdict
	mm	mm	
Sensitive current module; C102	0,15	5,95	PASS

Clearance

The observed clearance is well above the required clearance distance. No measurements required.

"IEC 61850-3 clause 6.6.1.1 General

Where there is any doubt that the required clearance and creepage distances are compliant with the values in the appropriate table from Annex C of IEC 60255-27:2013, measurements shall be made".

Requirement

The clearance and creepage distances shall meet the requirements to the relevant Table C.3 to C.10 of IEC 60255-27.

Result

The object passed the test (with a modified GIO pcb design).

9.4 IP rating test

Standard and date

Standard	IEC 61850-3, subclause 6.6.2
Basic standard	IEC 60529
Test date	20 March 2020

Characteristic test data

Serial number Sample A.1, Serial No. TEL-6311-1045

Terminal side	Degree of protection		
	Specification by the manufacturer	Observation	
Front	IP 2X	IP 2X	
Тор	IP 2X	IP 2X	
Bottom	IP 2X	IP 2X	
Back	IP 2X	IP 2X	
Left	IP 2X	IP 2X	
Right	IP 2X	IP 2X	

Requirement

- The test finger shall not touch hazardous live parts.
- The test finger voltage or energy shall not exceed the safe limits for normal operational use.
- No visual or functional inspection required.

Result

The object passed the test.

Photograph of test arrangement

- 66 -

9.5 Impulse voltage test

Standard and date

Standard	IEC 61850-3, subclause 6.6.3
Test date	11 March 2020

Environmental conditions

Ambient temperature	20,6 °C	Relative humidity	52,2	%
Ambient air pressure	1006 hPa			

Characteristic test data

Serial number	sample 3 (TEL-6311-1047)
Time to rise-value	1,2 μs (± 30%)
Time to half-value	50 μs (± 20%)
Source impedance	500 Ω (± 10%)
Insulation resistance	> 0,55 GΩ
Output energy	0,5 J (± 10%)
Pulse interval	≥ 1 s

Test arrangement		Voltage applied	No. of impulses	Polarity	Observations
Voltage applied to	Tested between	kV			
Power supply	Earth and all others	5	5	Positive	-
				Negative	-
BI; E01-	Earth and all others	5	5	Positive	-
E08/common				Negative	-
BI; E33-	Earth and all others	5	5	Positive	-
E40/common				Negative	-
BI; E73-	Earth and all others	5	5	Positive	-
E80/common				Negative	-
BI; E65-	Earth and all others	5	5	Positive	-
E72/common				Negative	-
BI; E49-	Earth and all others	5	5	Positive	-
E56/common				Negative	-
BO; S01A-S01B	S02A-SO2B	5	5	Positive	-
				Negative	-
BO; S04A-S04B	S05A-S05B	5	5	Positive	-
				Negative	-
BO; S06-S10	Earth and all others	5	5	Positive	-
				Negative	-
BO; S16-S20	Earth and all others	5	5	Positive	-
				Negative	-
A01/A02/A03/A04	Earth and all others	5	5	Positive	-
				Negative	-
A05/A06/A07/A08	Earth and all others	5	5	Positive	-
				Negative	-
A05	A06	5	5	Positive	-
				Negative	-
A07	A08	5	5	Positive	-
				Negative	-

Test arrangement Voltage applied to	Tested between	Voltage applied kV	No. of impulses	Polarity	Observations
VT;	Earth and all others	5	5	Positive	-
VA1/VB1/VC1/VN1 CT; IA11/IA12, IB11/IB12, IC11/IC12 In one group				Negative	-
VT;	Earth and all others	5	5	Positive	-
VA2/VB2/VC2/VN2 In one group				Negative	-
CT; IA21/IA22,	CT; IB21/IB22	5	5	Positive	-
				Negative	-
CT; IB21/IB22,	CT; IC21/IC22	5	5	Positive	-
				Negative	-
IRIG-B port	Earth and all others	1	5	Positive	-
				Negative	-

Note

- Each circuit has been tested against all other circuits and earth connected together.
- The test has been performed after completion of the climatic tests.

Requirement

- No disruptive discharges or flashovers shall occur.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

The object passed the test.

Photograph of test arrangement

9.6 Dielectric voltage test

Standard and date

Standard	IEC 61850-3, subclause 6.6.4
Test date	30 October 2019

Environmental conditions

Ambient temperature	22 °C	Relative humidity	30 %
Ambient air pressure	999 hPa		
Characteristic test data			
Serial number	Sample A.3.	Serial No. TEL-6311-1047	

Frequency	50 Hz	
Rated insulation voltage	300 V	
Test duration	1 min	

Test arrangement		Insulation resistance at 500 Vdc	Voltage applied	Insulation resistance at 500 Vdc	Observations
Voltage applied to	Tested between	(before the test) $M\Omega$	kVac	(after the test) $M\Omega$	
Power supply	Earth and all others	> 550	2	> 550	No discharge No flashover
BI; E01- E08/common	Earth and all others	> 550	2	> 550	No discharge No flashover
BI; E33- E40/common	Earth and all others	> 550	2	> 550	No discharge No flashover
BI; E73- E80/common	Earth and all others	> 550	2	> 550	No discharge No flashover
BI; E65- E72/common	Earth and all others	> 550	2	> 550	No discharge No flashover
BI; E49- E56/common	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S01A-S01B	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S02A-SO2B	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S03A-SO3B	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S04A-SO4B	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S05A-S05B	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S06-S10 In one group	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S11-S15 In one group	Earth and all others	> 550	2	> 550	No discharge No flashover
BO; S16-S20 In one group	Earth and all others	> 550	2	> 550	No discharge No flashover
A01/A02/A03/A04	Earth and all others	> 550	2	> 550	No discharge No flashover
A05/A06/A07/A08	Earth and all others	> 550	2	> 550	No discharge No flashover

Test arrangement		Insulation resistance at 500 Vdc	Voltage applied	Insulation resistance at 500 Vdc	Observations
Voltage applied to	Tested between	(before the test) $M\Omega$	kVac	(after the test) $M\Omega$	
A05	Earth and all others	> 550	2	> 550	No discharge No flashover
A06	Earth and all others	> 550	2	> 550	No discharge No flashover
A07	Earth and all others	> 550	2	> 550	No discharge No flashover
A08	Earth and all others	> 550	2	> 550	No discharge No flashover
VT; VA1/VB1/VC1/VN1 CT; IA11/IA12, IB11/IB12, IC11/IC12	Earth and all others	> 550	2	> 550	No discharge No flashover
In one group					
VT; VA2/VB2/VC2/VN2	Earth and all others	> 550	2	> 550	No discharge No flashover
In one group	E a de la cal		2		
IA21/IA22, IB21/IB22, IC21/IC22	all others	> 550	2	> 550	No flashover
In one group					
CT; IA21/IA22	Earth and all others	> 550	2	> 550	No discharge No flashover
CT; IB21/IB22,	Earth and all others	> 550	2	> 550	No discharge No flashover
CT; IC21/IC22	Earth and all others	> 550	2	> 550	No discharge No flashover
IRIG-B port	Earth and all others	> 550	0,5	> 550	No discharge No flashover

Observations

- 1. No discharge or flashover observed.
- 2. The measured insulation resistance value is well above the required values.

Requirement

- No disruptive discharges or flashovers shall occur.
- For equipment in a new condition, the insulation resistance shall not be less than 100 MΩ at 500 V d.c. After the damp heat type test, the insulation resistance shall not be less than 10 MΩ at 500 V dc.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

The object passed the test.

Photograph of test arrangement

9.7 **Protective bonding resistance**

Standard and date

Standard	IEC 61850-3, subclause 6.6.5
Test date	30 January 2020

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Test current	20 A
Test voltage	≤ 12 {Vac/Vdc}
Duration of test	60 s

Test point	Measured with respect to Terminal	Resistance Ω
Front screw right	PE on the power supply connector	0,009
Front right 19" bracket	PE on the power supply connector	0,009
Front left 19" bracket	PE on the power supply connector	0,009
Earth terminal rear side	PE on the power supply connector	0,009

Observations

The bonding resistance value is well below the 0,1 $\boldsymbol{\Omega}.$

Requirement

- The resistance between the protective conductor terminal and the part under test shall not exceed 0,1 Ω.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

The object passed the test.

9.8 Flammability of insulating materials, components and fire enclosures

Standard and date

Standard	IEC 61850-3, subclause 6.6.6
Basic standard	IEC 60255-27, subclause 10.6.5.2
Test date	8 and 15 April and 19 May 2020

Characteristic test data

EUT sample 2 (TEL-6311-1046) (with 2 variants of the BI/BO boards)

Assessment results

Serial number

This object has been provided with a fire enclosure;

- Housing/enclosure is made of metal/plastic having a flammability rating of V1 or better.
- Bottom ventilation holes have the dimension and spacing according subclause 7.10, table 6.
- Mechanical properties are compliant with IEC 60255-27, subclause 7.10.
- The sides shall have no openings within the area that is included within the inclined line C.
- Materials for components which fill an opening in a fire enclosure, and which are intended to be mounted in that opening shall be of flammability class V-1, or better or pass the flammability test of IEC 60695-11-10.

From the CB-scheme report, subclause 1.5.9.2. prerequisite to achieve compliance with the flammability requirements is the application of a fire enclosure.

Modified enclosure to meet the requirements for a fire enclosure;

Materials which fill an opening in the fire enclosure or which are outside the fire enclosure are listed in the table below;

RTU194 - Component Flammability Information 27/08/2019 - R01

Component	Part number	Manufacturer	Certification
Terminal blocks			
GIO module; Feed-through header - MSTB 2,5/10-GF-5,08	1776582	Phoenix Contact	UL94V-0
GIO module; Printed circuit board connector FKC 2,5/10- STF-5,08	1873281	Phoenix Contact	UL94V-0
POT module; Printed-circuit board connector - PC 4/10-G- 7,62	1804878	Phoenix Contact	UL94V-0
POT module; Printed-circuit board connector - PC 4/10- ST-7,62	1804988	Phoenix Contact	UL94V-0
FUE module; Feed-through header - MSTB 2,5/ 5-GF-5,08	1776537	Phoenix Contact	UL94V-0
FUE module; Printed-circuit board connector - MSTB 2,5/ 4-ST-5,08 - 1757035	1757035	Phoenix Contact	UL94V-0
Serial port MXP; 9 P sub-D connector male DB9P	182-009-113R531	NorComp	UL94V-0
DB9 cover male	160-000-109R000 (9 pins)	NorComp	UL94-HB75
IRIG Input; 9 P sub-D connector female DB9S	SDS107-PRP2-F09-SN63-11	Sullins	UL94V-0
DB9 cover female	160-000-109R000 (9 pins)	NorComp	UL94-HB75
Display, plastic overlays	5		
TFT (Thin-Film- Transistor) Color Liquid Crystal Display Module	NHD-4.3-480272EF-ATXL-T	Newhaven Display International, Inc.	UL94-V0
Membrane switch overlay, front and rear foil; textured polyester film, consisting of a base polyester and a flexible chemically bonded, UV-cured textured coating	PET F200	AUTOTEX	UL94-HB75 E93687
Hard Coated Polycarbonate	G/A180 G/A250 G/A380 G/A480 G/A750	AUTOFLEX PC	UL94-HB75 E165805

Materials inside a fire enclosure;

RTU194 - Component Flammability Information 27/08/2019 - R01

Component	Part number	Manufacturer	Certification
General			
PCBs	RTU194-GIO1-1482V3_1_0	U&I	UL94V-0
	RTU194-GIO2-1483V3.1.0	U&I	UL94V-0
	RTU194-POT2-1521V2.2.0	U&I	UL94V-0
	RTU194-CPU2-1675V3_0_0	U&I	UL94V-0
	RTU194-MXP-1629V3.0.0	U&I	UL94V-0
	RTU194-FUE2FLT-1736V1.0.0	U&I	UL94V-0
Binary Outputs - RTU19	94-102		•
Output Relays Varistor	PT571024 S10K275	TE Connectivity EPCOS/TDK	UL94V-2
Filter capacitor	DE2E3KY102MN3AU02F	Murata Electronics	UL94V-0
			UL94V-0
Binary Inputs - RTU194	-102		•
Input resistor	ASRM1JA1K00	Stackpole Electronics Inc	UL94V-0
TVS	SMF5.0A	Littelfuse Inc.	UL94V-0
Analog Inputs - RTU194	-102		
TVS	SD05C-01FTG	Littelfuse Inc.	UL94V-0
Voltage Inputs - RTU19	4-POT2		
Input resistor	HVR3700001004FR500	Vishay	UL94V-0
TVS	SD05C-01FTG	Littelfuse Inc.	UL94V-0
Current Inputs - RTU19	4-POT2		
Primary wire	Standard NM-IEC 60332 wiring	Mercosur	IEC60332
СТ		Electrohms	UL94-V0
IRIG Input - RTU194-CP	U2		
TVS	SMF5.0A	Littelfuse Inc.	UL94V-0
Serial ports - RTU194-N	ЛХР		
TVS	824501900	Wurth Electronics Inc.	UL94V-0
Power Supply Input - R	TU194-FUE2		
Varistor	S10K275	EPCOS/TDK	UL94V-0
X Filter Capacitor	BFC233920105	Vishay	UL94V-0
Y Filter Capacitor	C981U103MZVDBA7317	KEMET	UL94V-0
Common mode choke	7448011305	Wurth Electronics Inc.	UL94V-0

Requirement

- The object shall comply with the flammability requirements of IEC 60255-27, subclause 7.1. to 7.12.
- No visual or functional inspection required.

Result

9.9 Single-fault condition

Standard and date

Standard	IEC 61850-3, subclause 6.6.7
Test date	30 and 31 March and 1 April 2020

Environmental conditions

Ambient temperature	See temperature measurements	°C
---------------------	------------------------------	----

Characteristic test data

Serial number	EUT sample 3 (TEL-6311-1045)
Power supply	88 – 250 Vdc/ac

Circuit	Test	Observations
Power supply 24 V	Short circuit internal voltage +24 V	1
	Max. current on +24 VDC circuit during 2 hours (24 Vdc @ 6,5 A, just before shutdown) The supply shuts down at higher currents > 6,5 A and tries to start up (Hikken) Input voltage 88 Vac (measured input current: 2 A) Efficiency; (23,8 x 6,5/88 x 2) x 100 % = 88 %	2
	Set at I = 9 A, U = 20,7 V; causes max input current	3
Power supply 5V	Short circuit protected	4
Power supply 3V3	Short circuit protected	4
Protective impedance	Short circuit component disconnect component	N/A
Transformers	Short circuit on secondary side	5
Outputs	Short circuit one by one	1,2
Insulation between circuits and parts	Short circuit functional insulation	6
Primary circuits, hazardous non- primary circuits	Short circuit in the Corel 24 Vdc power supply	7
DC input voltage	Reversal of the polarity of the DC input voltage {See also chapter 9.8}	7

Measured temperatures (after temperature stabilisation, > 2 hrs);

- TC1; (attached at the mounting plate on which the power supply has been mounted); 66 °C
- TC2; (ambient); 22 °C
- TC3; (on top of the enclosure), above the power supply; 31 °C

Observations

- 1. Switched off directly. Tries to startup but shuts down immediately. The supply complies with IEC 60950-1 (CB-report available).
- 2. Normal functioning. Some smell of a cooked resistor.
- 3. Switched off directly. Tries to startup but shuts down immediately. Cyclic startup-shutdown for output currents> 6,5A.
- 4. The data sheets show compliance with IEC 60950-1 or IEC 62368-1.
- 5. Covered, see CB-scheme TRF.
- 6. Considered; no single fault test performed on IRIG and RS232 ports because these are low power, low voltage ports.
- 7. Covered, see CB-scheme report.
- 8. The supply has been provided with a common AC/DC input. Therefore it can handle polarity reversal inherently.

Requirement

- The test shall not result in the spread of fire or result in an electric shock hazard.
- The test object does not have to be functional after the test.
- No visual or functional inspection required.

Result

10 ELECTROMAGNETIC COMPATIBILITY

10.1 Inspection

10.1.1 Pre-inspection

The pre-inspection is performed to verify that the test object is in operational state. The pre-inspection is carried out prior to the test procedure.

The communication with the maintenance computer is verified. Signals are simulated to verify the functioning and operation with the specified performance specification for the following inputs and outputs:

- analogue inputs (CT, VT, sensitive current);
- digital inputs (binary inputs);
- contact outputs (binary outputs);
- timing port (IRIG-B);
- data communication (optical, RS232).

10.1.2 Visual and functional inspection

After each test a visual and functional inspection is carried out as described in this chapter.

The visual inspection is carried out to verify that there is no visual mechanical damage. There shall be no burning of any components.

Functional inspection is carried out to verify the correct operation of the test object.

The measurements of analogue input data shall not exceed twice the class index for the measurement. There shall be no:

- alarm indications on display and LED's;
- error messages reported in the maintenance computer;
- unintentional change of state of contact outputs;
- unintentional change of state of the binary input inputs;
- loss of timing information;
- there shall be no degradation of performance below the claimed performance according reliability class (1 or 2).

Unless otherwise stated the visual and functional inspection was carried out successfully after each test.

10.2 Radiated emission

Standard and date

Standard	IEC 61850-3, subclause 6.7.4
Basic standard	CISPR 22
Test date	4 December 2019

Characteristic test data

Serial number	Sample A.4 TEL-6396-1098
Power supply	110 - 220 Vac
	110 - 220 Vdc

- 80 -

Power supply voltage of 230 Vac with horizontal and vertical antenna polarisation, in the frequency range 30Mhz – 1GHz (red = vertical, blue = horizontal)

Preview Result 1 V-PK+
EN 55022 E-Field Class A Q P@3 m

Preview Result1H-PK+ Final_ResultQPK

Final result (30 – 1000 MHz)

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
MHz	dBµV/m	dBµV/m	dB	ms	kHz	cm		deg
40,710	25,39	50,00	24,61	1000,0	120,000	100,0	V	104,0
71,670	9,10	50,00	40,90	1000,0	120,000	312,0	V	155,0
107,220	22,13	50,00	27,87	1000,0	120,000	108,0	V	98,0
225,000	28,70	50,00	21,30	1000,0	120,000	158,0	V	248,0
250,770	34,73	57,00	22,27	1000,0	120,000	117,0	Н	244,0
525,000	33,57	57,00	23,44	1000,0	120,000	103,0	V	314,0
774,990	32,62	57,00	24,38	1000,0	120,000	100,0	Н	55,0

The limits are; At 3 m measurement distance 30 to 230 MHz; 50 dBuV/m QP 230 to 1000 MHz; 57 dBuV/m QP

- 81 -

Final result (1000 – 6000 MHz)

Frequency	MaxPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
MHz	dBµV/m	dBµV/m	dB	ms	kHz	cm		deg	dB/m
1350,000	43,96	76,00	32,04	1000,0	1000,000	107,0	V	173,0	-0,2
1510,000	46,17	76,00	29,83	1000,0	1000,000	104,0	V	148,0	1,0

The limits are;

1000 to 3000 MHz; 76 dBuV/m PK 1000 to 3000 MHz; 56 dBuV/m AV 3000 to 6000 MHz; 80 dBuV/m PK 3000 to 6000 MHz; 60 dBuV/m AV

Remarks

The pre-scan shows the power supply input voltage has negligible influence on the radiated emission. Therefore the final test has been performed at 230 Vac.

Requirement

The radiated emission shall not exceed the limits specified in the standard CISPR 22 for class A equipment.

Result

Photograph of test arrangement

Radiated emission measurement setup 30 – 1000 MHz.

1070-20

Radiated emission measurement setup 1000 - 6000 MHz.

10.3 Conducted emission

Standard and date

Standard	IEC 61850-3, subclause 6.7.4
Basic standard	CISPR 22
Test date	28 February 2020

Characteristic test data

Serial number Power supply Sample A.4 TEL-6396-1098 88-250 Vac 88-250 Vdc

Power supply port (with a power supply voltage of 88 Vac)

Final result

Trace	Frequency		Level (dBµV)	Phase	Detector	Delta Limit/dB
2	566.000000000	kHz	8.87	L1	Average	-51.13
2	786.000000000	kHz	12.65	L1	Average	-47.35
1	1.714000000	MHz	15.71	N	Quasi Peak	-57.29
2	1.718000000	MHz	13.26	L1	Average	-46.74
1	3.438000000	MHz	31.06	L1	Quasi Peak	-41.94
2	3.438000000	MHz	30.47	L1	Average	-29.53
1	5.398000000	MHz	23.89	L1	Quasi Peak	-49.11
2	6.110000000	MHz	17.99	L1	Average	-42.01
1	6.90600000	MHz	33.01	N	Quasi Peak	-39.99
2	7.446000000	MHz	31.63	Ν	Average	-28.37
2	11.454000000	MHz	26.89	Ν	Average	-33.11
1	16.850000000	MHz	26.14	N	Quasi Peak	-46.86
2	18.902000000	MHz	31.53	Ν	Average	-28.47
1	27.318000000	MHz	16.94	Ν	Quasi Peak	-56.06

Note

Power supply port (with a power supply voltage of 110 Vac)

Trace	Frequency		Level (dBµV)	Phase	Detector	Delta Limit/dB
2	338.000000000	kHz	16.87	L1	Average	-49.13
2	786.000000000	kHz	11.63	L1	Average	-48.37
2	1.718000000	MHz	13.57	L1	Average	-46.43
1	3.438000000	MHz	30.11	L1	Quasi Peak	-42.89
2	3.438000000	MHz	29.53	L1	Average	-30.47
1	5.314000000	MHz	22.26	N	Quasi Peak	-50.74
2	6.118000000	MHz	19.68	L1	Average	-40.32
1	6.814000000	MHz	36.01	N	Quasi Peak	-36.99
2	7.446000000	MHz	31.66	L1	Average	-28.34
2	11.458000000	MHz	28.92	N	Average	-31.08
1	16.754000000	MHz	9.28	N	Quasi Peak	-63.72
1	18.246000000	MHz	28.58	N	Quasi Peak	-44.42
2	18.906000000	MHz	30.60	Ν	Average	-29.40

Note

Trace	Frequency		Level (dBµV)	Phase	Detector	Delta Limit/dB
2	562.00000000	kHz	9.23	L1	Average	-50.77
1	610.000000000	kHz	18.21	L1	Quasi Peak	-54.79
2	790.000000000	kHz	11.65	L1	Average	-48.35
2	1.718000000	MHz	12.94	L1	Average	-47.06
1	1.722000000	MHz	20.18	Ν	Quasi Peak	-52.82
1	3.438000000	MHz	29.43	L1	Quasi Peak	-43.57
2	3.438000000	MHz	28.83	L1	Average	-31.17
1	6.106000000	MHz	26.26	L1	Quasi Peak	-46.74
2	6.10600000	MHz	19.17	Ν	Average	-40.83
2	7.45000000	MHz	32.54	L1	Average	-27.46
1	7.462000000	MHz	36.88	Ν	Quasi Peak	-36.12
2	11.462000000	MHz	28.43	Ν	Average	-31.57
1	17.534000000	MHz	12.94	Ν	Quasi Peak	-60.06
1	18.906000000	MHz	30.52	Ν	Quasi Peak	-42.48
2	18.914000000	MHz	30.49	Ν	Average	-29.51

Note

Trace	Frequency		Level (dBµV)	Phase	Detector	Delta Limit/dB
2	250.00000000	kHz	5.91	N	Average	-60.09
2	498.000000000	kHz	15.32	L1	Average	-50.68
2	794.000000000	kHz	13.12	L1	Average	-46.88
1	1.634000000	MHz	14.43	L1	Quasi Peak	-58.57
2	1.718000000	MHz	11.76	L1	Average	-48.24
1	2.86600000	MHz	28.39	N	Quasi Peak	-44.61
2	3.438000000	MHz	26.62	N	Average	-33.38
1	5.446000000	MHz	23.79	L1	Quasi Peak	-49.21
2	6.118000000	MHz	19.36	L1	Average	-40.64
2	7.454000000	MHz	33.35	N	Average	-26.65
1	8.302000000	MHz	26.18	N	Quasi Peak	-46.82
2	11.466000000	MHz	30.29	N	Average	-29.71
1	16.886000000	MHz	9.23	L1	Quasi Peak	-63.77
1	18.382000000	MHz	16.11	Ν	Quasi Peak	-56.89
2	18.918000000	MHz	30.84	N	Average	-29.16

Note

Trace	Frequency		Level (dBµV)	Phase	Detector	Delta Limit/dB
2	314.000000000	kHz	20.51	L1	Average	-45.49
2	630.000000000	kHz	15.46	L1	Average	-44.54
2	790.00000000	kHz	9.05	L1	Average	-50.95
1	1.718000000	MHz	19.70	Ν	Quasi Peak	-53.30
2	1.718000000	MHz	13.13	L1	Average	-46.87
1	3.442000000	MHz	29.02	L1	Quasi Peak	-43.98
2	3.442000000	MHz	26.91	L1	Average	-33.09
1	5.986000000	MHz	24.15	Ν	Quasi Peak	-48.85
2	6.102000000	MHz	17.81	L1	Average	-42.19
1	7.654000000	MHz	30.88	L1	Quasi Peak	-42.12
2	8.02600000	MHz	31.11	Ν	Average	-28.89
2	11.466000000	MHz	30.04	Ν	Average	-29.96
1	16.234000000	MHz	9.12	Ν	Quasi Peak	-63.88
2	18.922000000	MHz	31.10	Ν	Average	-28.90
1	19.106000000	MHz	28.08	Ν	Quasi Peak	-44.92

Note

Power supply port (with a power supply voltage of 250 Vdc)

Trace	Frequency		Level (dBµV)	Phase	Detector	Delta Limit/dB
2	541.50000000	kHz	21.34	L1	Average	-38.66
1	543.750000000	kHz	20.40	L1	Quasi Peak	-52.60
2	795.75000000	kHz	9.71	L1	Average	-50.29
2	1.477500000	MHz	9.79	L1	Average	-50.21
1	1.542750000	MHz	17.66	L1	Quasi Peak	-55.34
1	1.612500000	MHz	19.43	L1	Quasi Peak	-53.57
2	1.628250000	MHz	11.57	L1	Average	-48.43
2	2.292000000	MHz	14.15	L1	Average	-45.85
1	2.863500000	MHz	27.08	L1	Quasi Peak	-45.92
2	2.868000000	MHz	21.90	L1	Average	-38.10
1	3.439500000	MHz	30.71	L1	Quasi Peak	-42.29
2	3.439500000	MHz	28.60	L1	Average	-31.40
1	4.013250000	MHz	20.33	L1	Quasi Peak	-52.67
2	4.013250000	MHz	17.51	L1	Average	-42.49
2	4.915500000	MHz	13.31	L1	Average	-46.69
1	5.253000000	MHz	20.59	L1	Quasi Peak	-52.41
2	6.785250000	MHz	29.02	L1	Average	-30.98
1	6.789750000	MHz	34.80	L1	Quasi Peak	-38.20
1	7.408500000	MHz	37.84	N	Quasi Peak	-35.16
2	7.453500000	MHz	32.85	N	Average	-27.15
2	8.598750000	MHz	26.15	N	Average	-33.85
1	9.174750000	MHz	30.10	N	Quasi Peak	-42.90
1	11.017500000	MHz	30.44	L1	Quasi Peak	-42.56
2	11.465250000	MHz	29.95	N	Average	-30.05
1	13.186500000	MHz	20.18	N	Quasi Peak	-52.82
2	13.186500000	MHz	19.02	N	Average	-40.98
1	18.917250000	MHz	33.94	N	Quasi Peak	-39.06
2	18.917250000	MHz	31.55	N	Average	-28.45
1	22.357500000	MHz	31.87	N	Quasi Peak	-41.13
2	22.357500000	MHz	29.46	N	Average	-30.54
1	25.795500000	MHz	28.56	N	Quasi Peak	-44.44
2	25.797750000	MHz	26.68	N	Average	-33.32

Note

The decimal separator is decimal point in the above table of results.

The limits are; 0,15 to 0,5 MHz; 79 dBuV QP 0,15 to 0,5 MHz; 66 dBuV AV 0,5 to 30 MHz; 73 dBuV QP 0,5 to 30 MHz; 60 dBuV AV

Remarks

The emission measurements have been conducted while half of the binary outputs of the test object were energized.

Telecommunication port

The test object has not been provided with copper ethernet ports.

Requirement

The conducted emission shall not exceed the limits for class A equipment, specified in the standard CISPR 22.

Result

Photograph of test arrangement

1070-20

10.4 Electrostatic discharge

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-2
Test date	31 January 2020

Environmental conditions

Ambient temperature	20,5 °C	Relative humidity	49,8	%
Ambient air pressure	999 hPa			

Characteristic test data

Serial number Power supply Sample A.4 TEL-6396-1098 230 Vac

Method	Test voltage	See photographs on next pages	Polarity	Observations
	kV			
Air discharges	2, 4, 8	1	+ and -	1, 2
Contact discharges	6	1	+ and -	1
Indirect contact	6	VCP right of object	+ and -	1
		HCP under object	+ and -	1

Observations

- 1. No degradation of performance observed.
- 2. Light ionisation at the LEDs and display but no discharge (8 kV).

Requirements

- The object shall comply with reliability class 2 of chapter 7.5 of the standard.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

Photographs of test points

Photo 1; discharge positions

- On foil; AD
- On metal parts; CD

Photographs of test arrangement

1070-20

Application of ESD on the VCP, front side.

10.5 Radiated interference

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-3
Test date	4 and 5 December 2019

Characteristic test data

Serial number	Sample A.4 TEL-6396-1098
Amplitude modulated	80 % AM (1 kHz)
Dwell time	0,5 s
Spot frequencies	10 s

Frequency sweep

Direction	Test level	Sweep rate	Frequency sweep	Observations
	V/m		MHz	
Front side of EUT	10	≤ 1%	80 – 3000	-
(horizontal & vertical polarization)				
Rear side of EUT	10	≤ 1%	80 – 3000	-
(horizontal & vertical polarization)				
Right and left side of EUT	10	≤ 1%	80 – 3000	-
(horizontal & vertical polarization)				

Spot frequencies

Direction	Test level	Duty cycle	Spot frequencies	Observations
	V/m		MHz	
Front side of EUT (horizontal & vertical polarization)	10	100%	80; 160; 380; 450; 900; 1850; 2150	-
Rear side of EUT (horizontal & vertical polarization)	10	100%	80; 160; 380; 450; 900; 1850; 2150	-
Right and left side of EUT (horizontal & vertical polarization)	10	100%	80; 160; 380; 450; 900; 1850; 2150	-

Observations

No degradation of performance observed.

Requirement

- The object shall comply with reliability class 2 of chapter 7.5 of the standard.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

Photograph of test arrangement

10.6 Electrical fast transient

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-4
Test date	8 October 2019

Characteristic test data

Serial number	Sample A.2, Serial No. TEL-6311-1046
Polarity	positive and negative
Test duration	1 min

Repetition Circuit Terminals Coupling Test voltage Observations frequency kV kHz CM (CDN) 1 L, N, PE 4 5 Power supply 100 1 RS232 port to COM1 CM (CCC) 4 1 5 **RTU115** 100 1 IRIG-B IRIG-B CM (CCC) 4 5 1 100 1 S01A/B-CM (CCC) 4 1 **Relay outputs** 5 S05A/B 100 1 S06A/B-**Relay outputs** CM (CCC) 4 5 1 S10A/B 100 1 **Relay outputs** S11A/B -CM (CCC) 4 1 5 S15A/B 100 1 **Relay outputs** S16A/B -CM (CCC) 4 5 1 S20A/B 100 1 **Digital inputs** E01 - E08 (and CM (CCC) 4 5 1 ED05 active common EG01 100 1 and EG02 E57 – E64 (and **Digital inputs** CM (CCC) 4 5 1 common EG71 ED61 active 100 1 and EG72 **Digital inputs** E33 - E40 (and CM (CCC) 4 5 1 common EG41 ED37 active 100 1 and EG42 Sensitive DC CM (CCC) 4 Channel 5 1 current input A01A/A01B 100 1 Sensitive DC 4 5 1 Channel CM (CCC) current input A04A/A04B 100 1 Sensitive DC Channel CM (CCC) 4 1 5 current input A07A/A07B 100 1 IA11/12, CT input CM (CCC) 4 5 1 IB11/12, 100 1 IC11/12 VT input VA1, VB1, VC1, CM (CCC) 4 5 1 VN1 100 1 PE CM 4 2 Earth port 5 (CDN/CCC) 100 2

CM = Common Mode CDN = Coupling-Decoupling Network CCC = Capacitive Coupling Clamp

Note

Fast transients at 100 kHz is optional.

Observations

1. No degradation of performance observed.

2. IRIG-B timing signal lost but recovers after removal of the disturbance. With CCC coupling no degradation of performance observed.

Requirement

- The object shall comply with reliability class 2 of chapter 7.5 of the standard.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

Photograph of test arrangement

10.7 Slow damped oscillatory wave

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-18
Test date	9 October 2019

Characteristic test data

Serial number	Sample A.2, Serial No. TEL-6311-1046	
Voltage oscillation frequency	1 MHz	
Voltage rise time	75 ns	
Repetition frequency	400 Hz	
Output impedance	200 Ω	
Polarity of the first half-period	positive and negative	

kv kv Power supply L, N, PE CM 2,5 - Digital inputs EG01; E01 CM 2,5 - Digital inputs EG01; E01 CM 2,5 - Digital inputs EG01; E04 CM 2,5 - Relay outputs EG91; E73 CM 2,5 - Relay outputs EG31; E25 CM 2,5 - Current input (sensitive) IO 28 A07A; A07B CM^{31} 2,5 - Current input (sensitive) IO 2A A07A; A07B CM^{31} 2,5 - Current input (sensitive) IO 2A DM 1,0 -	Circuit	Terminals	Coupling	Test voltage	Observations
Power supply L, N, PE CM 2,5 - Digital inputs EG01; E01 CM 2,5 - Digital inputs EG01; E01 CM 2,5 - Digital inputs EG01; E04 CM 2,5 - Relay outputs EG31; E73 CM 2,5 - Relay outputs EG31; E25 CM 2,5 - Current input (sensitive) IO 2B A05A; A05B CM ¹¹ 2,5 - Current input (sensitive) IO 2A A02A; A02B CM ¹¹ 2,5 - (sensitive) IO 2A MOT CM 2,5 - N/A - -				kV	
$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline DM & 1,0 & - \\ \hline D diatinputs & EG01; E01 & CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline D gital inputs & EG01; E04 & CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline CM & 2,5 & - \\ \hline DM & 1,0 & - \\ \hline Cm & 1,0 & - \\ \hline Current input (sensitive) IO 2B & \hline M & 1,0 & - \\ \hline Current input (sensitive) IO 2B & \hline M & 1,0 & - \\ \hline Current input (sensitive) IO 2B & \hline M & 1,0 & - \\ \hline Current input (sensitive) IO 2A & \hline M/A & - & - \\ \hline Current input (sensitive) IO 2A & \hline M/A & - & - \\ \hline CT input Pot 2A & \hline M & 1,0 & - \\ \hline CT input Pot 2A & \hline M & 1,0 & - \\ \hline CT input Pot 2A & \hline DM & 1,0 & - \\ \hline CT input Pot 2A & \hline DM & 1,0 & - \\ \hline CT input Pot 2A & \hline DM & 1,0 & - \\ \hline CT input Pot 2A & \hline DM & 1,0 & - \\ \hline CT input Pot 2A & \hline DM & 1,0 & - \\ \hline CT input Pot 2A & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2A & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Pot 2B & \hline DM & 1,0 & - \\ \hline CT input Po$	Power supply	L, N, PE	CM	2,5	-
Digital inputs ED 01 active EG01; E01 CM 2,5 - Digital inputs ED 01 active EG01; E04 CM 2,5 - Digital inputs ED 01 active EG01; E04 CM 2,5 - Digital inputs ED 49 active EG01; E04 CM 2,5 - Relay outputs EG91; E73 CM 2,5 - Relay outputs EG42; E40 CM 2,5 - Relay outputs EG31; E25 CM 2,5 - Current input (sensitive) IO 2B A05A; A05B CM ¹¹ 1,0 - Current input (sensitive) IO 2B A07A; A07B CM ¹¹ 2,5 - Current input (sensitive) IO 2A A02A; A02B CM ¹¹ 2,5 - Current input (sensitive) IO 2A CM ¹¹ 2,5 - - Current input (sensitive) IO 2A MOA - - - Current input (sensitive) IO 2A CM 2,5 - - To pot 2A DM 1,0 -			DM	1,0	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Digital inputs	EG01; E01	CM	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ED 01 active		DM	1,0	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Digital inputs	EG01; E04	СМ	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ED 01 active		DM	1,0	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Digital inputs	EG01; E04	СМ	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ED 49 active		DM	1,0	-
$ \begin{array}{ c c c c c c c } \hline DM & 1,0 & - & & & & & & & & & & & & & & & & & $	Relay outputs	EG91; E73	CM	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			DM	1,0	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Relay outputs	EG42; E40	CM	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			DM	1,0	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Relay outputs	EG31; E25	CM	2,5	-
$\begin{array}{c c} \mbox{Current input} (sensitive) IO 2B & A05A; A05B & CM^{11} & 2,5 & - & & & & & & & & & & & & & & & & & $			DM	1,0	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Current input	A05A; A05B	CM ¹⁾	2,5	-
$\begin{array}{c} \mbox{Current input} (sensitive) IO 2B \\ \mbox{(sensitive) IO 2B} \end{array} & \mbox{A07A; A07B} & \mbox{CM}^{10} & 2,5 & - & & & & & & & & & & & & & & & & & $	(sensitive) IO 2B		N/A	-	-
$\begin{array}{ c c c c c c c } (sensitive) IO 2B & \hline N/A & - & - & - & - & - & - & - & - & - & $	Current input	A07A; A07B	CM ¹⁾	2,5	-
$\begin{array}{c c} \mbox{Current input} (sensitive) IO 2A \\ \mbox{Sensitive) IO 2A} \end{array} $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	(sensitive) IO 2B		N/A	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Current input	A02A; A02B	CM ¹⁾	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(sensitive) IO 2A		N/A	-	-
Pot 2A DM 1,0 - CT input Pot 2A IC11; IC12 CM 2,5 - Pot 2A DM 1,0 - - CT input Pot 2B IC21; IC22 CM 2,5 - VT input Pot 2B IC21; IC22 CM 2,5 - VT input Pot 2B VA1; VN1 CM 2,5 - VT input Pot 2A VA1; VN1 CM 2,5 - VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - IRIG-B IRIG-B CM ¹) 2,5 - DM 1,0 - - -	CT input	IB11; IB12	СМ	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pot 2A		DM	1,0	-
Pot 2A DM 1,0 - CT input Pot 2B IC21; IC22 CM 2,5 - VT input Pot 2A VA1; VN1 CM 2,5 - VT input Pot 2A VA1; VN1 CM 2,5 - VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - IRIG-B IRIG-B CM ¹) 2,5 1	CT input	IC11; IC12	СМ	2,5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pot 2A		DM	1,0	-
Pot 2B DM 1,0 - VT input Pot 2A VA1; VN1 CM 2,5 - DM 1,0 - - VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - IRIG-B IRIG-B CM ¹) 2,5 1	CT input	IC21; IC22	СМ	2,5	-
$\begin{array}{c c c c c c c } VT \mbox{input} & VA1; VN1 & CM & 2,5 & -\\ \hline Pot 2A & DM & 1,0 & -\\ VT \mbox{input} & VB2; VN2 & CM & 2,5 & -\\ \hline Pot 2B & DM & 1,0 & -\\ VT \mbox{input} & VA2; VN2 & CM & 2,5 & -\\ \hline Pot 2B & DM & 1,0 & -\\ \hline Pot 2B & DM & 1,0 & -\\ \hline IRIG-B & IRIG-B & CM^{1)} & 2,5 & 1\\ \hline DM & N/A & -\\ \end{array}$	Pot 2B		DM	1,0	-
Pot 2A DM 1,0 - VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - IRIG-B IRIG-B CM ¹) 2,5 1	VT input	VA1; VN1	СМ	2,5	-
VT input Pot 2B VB2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - VT input Pot 2B VA2; VN2 CM 2,5 - IRIG-B IRIG-B CM ¹⁾ 2,5 1 DM N/A -	Pot 2A		DM	1,0	-
Pot 2B DM 1,0 - VT input Pot 2B VA2; VN2 CM 2,5 - DM 1,0 - - IRIG-B IRIG-B CM ¹⁾ 2,5 1 DM N/A -	VT input	VB2; VN2	СМ	2,5	-
VT input Pot 2B VA2; VN2 CM 2,5 - IRIG-B IRIG-B CM ¹) 1,0 - DM 1,0 - - DM 0 2,5 1 DM N/A -	Pot 2B		DM	1,0	-
Pot 2B DM 1,0 - IRIG-B IRIG-B CM ¹⁾ 2,5 1 DM N/A -	VT input	VA2; VN2	CM	2,5	-
IRIG-B IRIG-B CM ¹⁾ 2,5 1 DM N/A -	Pot 2B		DM	1,0	-
DM N/A -	IRIG-B	IRIG-B	CM ¹⁾	2,5	1
			DM	N/A	-

Circuit	Terminals	Coupling	Test voltage kV	Observations
COM1	RS 232	CM ¹⁾	2,5	1
		DM	N/A	-

Note

¹⁾injected on the shield

Observations

1. IRIG-B timing signal lost but recovers after removal of the disturbance.

Requirement

- The object shall comply with reliability class 2 of chapter 7.5 of the standard.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

Photograph of test arrangement

- 107 -

10.8 Surge

Standard and date	
Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-5
Test date	30 and 31 January 2020, 3, 7, 10 and 11 February 2020 and 18 March 2020

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098	
Source impedance	2 Ω	
Front time (voltage)	1,2 μs	
Time to half value (voltage)	50 µs	
Front time (current)	8 μs	
Time to half value (current)	20 µs	
Auxiliary power supply port		
Coupling capacitor	18 µF	
Coupling resistor	0 Ω	
Coupling resistor	10 Ω	
Coupling capacitor	9 µF	
Input and output ports		
Coupling resistor	40 Ω	
Coupling capacitor	0 <i>,</i> 5 μF	

five positive and five negative pulses each at
0 °, 90 °, 180 ° and 270 °
1 surge/min

Circuit	Terminals	Coupling	Test voltage	Observations
			kV	
Power supply	L, N, PE	LL	0,5/1/2	-
		LE	0,5/1/2/4	-
СТ	IA21/IA22;	LL	0,5/1/2	-
	IB21/IB22; IC21/IC22; PE/GND	LE	0,5/1/2/4	-
VT	VA; VB; VC; VN	LL	0,5/1/2	-
		LE	0,5/1/2/4	-
BI	E36; EG	LL	0,5/1/2	-
		LE	0,5/1/2/4	1
BI	E79; EG	LL	0,5/1/2	-
		LE	0,5/1/2/4	-
BI	E22; EG	LL	0,5/1/2	-
		LE	0,5/1/2/4	-
BO	S15A; S15B	LL	0,5/1/2	-
		LE	0,5/1/2/4	-
IRIG-B	Signal; GND	LL	0,5	-
	Cable shield	LE	0,5/1	-
RS232	RX; TX; GND	LL	0,5	-
	Cable shield	LE	0,5/1	-
Low level current	А; В	LL	0,5	2
input EA01/EA04	Cable shield	LE	0,5/1	-

Observations

- 1. The surge current increased for surge transients from +2500 V upto and including +4000 V. No breakdown. BI remains operational.
- Current reading on input EA04 goes to 14,89 mA and returns to 14,86 with some delay (approx. 1s).

Requirement

- The object shall comply with acceptance criteria class 2 of chapter 7.5 of the standard.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

- 110 -

10.9 Conducted disturbance induced by radio-frequency fields

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-6
Test date	10 and 11 October 2019 and 1 and 29 April 2020

Characteristic test data

Serial number	Sample A.2, Serial No. TEL-6311-1046	
Source impedance	150 Ω	
Amplitude modulated	80 %	AM (1 kHz)
Sweep rate	1 %	
Dwell time (frequency sweep)	0,7 s	
Spot frequencies	10 s	

Frequency sweep

Circuit	Terminals	Test level	CDN	Frequency sweep	Observations
		V		IVIHZ	
VT input Pot 2A	VA1;VB1;VC1;VN1	10	M4N	0,15 - 80	-
IRIG-B	IRIG-B	10	S9	0,15 - 80	-
RS 232	RS 232	10	S9	0,15 - 80	-
CT input Pot 2A	ut Pot 2A A11;IA12;IB11;IB12; IC11;IC12		M4N	0,15 - 80	-
Digital inputs IO 2A	EG01 and E01-E07	10	AF8	0,15 - 80	-
Digital inputs IO 2A	EG21;E22	10	AF2	0,15 - 80	-
Digital inputs IO 2A	EG31;E32	10	AF2	0,15 - 80	-
Current input (sensitive) IO2A	A01A;A01B	10	EM-clamp	0,15 - 80	-
Current input (sensitive) IO2A	A02A;A02B	10	EM-clamp	0,15 - 80	-
Power supply	L,N	10	M2	0,15 - 80	-
Relay outputs	S15A/S15B	10	AF2	0,15 - 80	-

The test object has been modified to meet the requirements for conducted disturbances induced by EM-fields. Refer to chapter 16.

Observations

No degradation of performance observed during and after the test.

Spot frequencies

Circuit	Terminals	Test level	CDN	Frequency sweep	Observations
		V		MHz	
VT input Pot 2A	VA1;VB1;VC1;VN1	10	M4N	27, 68	-
IRIG-B	IRIG-B	10	M4N	27, 68	-
RS 232	RS 232	10	M4N	27, 68	-
CT input Pot 2A	IA11;IA12;IB11;IB12; IC11;IC12	10	M4N	27, 68	-
Digital inputs IO 2A	EG11;ED09	10	M2	27, 68	-
Digital inputs IO 2A	EG11;ED19	10	M2	27, 68	-
Digital inputs IO 2B	EG61;ED49	10	M2	27, 68	-
Current input (sensitive) IO2A	A01A;A01B	10	AF2	27, 68	-
Current input (sensitive) IO2A	A02A;A02B	10	AF2	27, 68	-
Power supply	L,N	10	M2	27, 68	-
Relay outputs	S01A; to S05B	10	Clamp	27, 68	-
Relay outputs	S11A; to S15B	10	Clamp	27, 68	-
Relay outputs	S16A; to S20B	10	Clamp	27, 68	-

Observations

No degradation of performance observed during and after the test.

Requirement

- The object shall comply with reliability class 2 of chapter 7.5 of the standard.
- No changes in the states of the electrical, mechanical, or communication status outputs occur. This includes alarms, status outputs, or targets.
- During the tests, SCADA analog values shall not change by more than 2 % of full-scale values. After the test, accuracy shall revert to the manufacturer-claimed accuracy.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

10.10 Power frequency magnetic field

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-8
Test date	27 January 2020

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Power supply	230 Vac
Frequency	50 Hz

Direction	Test level	Duration	Observations
	A/m	S	
Horizontal longitudinal (x)	150 ¹⁾	Continuous	-
	1000	3 s	-
Horizontal transversal (y)	150 ¹⁾	Continuous	-
	1000	3 s	-
Vertical (z)	150 ¹⁾	Continuous	-
	1000	3 s	-

¹⁾ Test performed with a field strenght level of 150 A/m in stead of required 100 A/m (3 minutes per direction).

Observations

No degradation of performance observed.

Requirement

- The object shall comply with reliability class 2 of chapter 7.5 of the standard.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

10.11 Mains frequency voltage immunity

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-16
Test date	28 January 2020

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Frequency	50 / 60 Hz

Power supply ports

Circuit	Terminals	Coupling	Test voltage	Time	Frequency	Coupling resistor	Coupling capacitor	Observations
			V	seconds	Hz	Ω	μF	
Power	L, N w.r.t	СМ	30	60	50 / 60	100	1	-
supply input	PE	СМ	300	1	50 / 60	100	1	-
-	-	СМ	30	60	50 / 60	100	1	
		CM	300	1	50 / 60	100	1	

Rated power supply input voltage; 110 Vdc

Short duration test also tested with a power supply voltage of 88 Vdc.

Binary input ports (110/220 Vdc version), energized at rated voltage (110 vdc)

Circuit	Terminals	Coupling	Test voltage	Time ²⁾	Frequency	Coupling resistor	Coupling capacitor	Observations
			v	seconds	Hz	Ω	μF	
BI	E01-E08 ¹⁾	СМ	30	60	50 / 60	100	1	-
	/EG02 to PE	CM	300	1	50 / 60	100	1	-
BI	E09/EG02	СМ	30	60	50 / 60	100	1	-
	to PE	CM	300	1	50 / 60	100	1	-
BI	E16/EG02	СМ	30	60	50 / 60	100	1	-
	to PE	CM	300	1	50 / 60	100	1	-
BI	E22/EG21	СМ	30	60	50 / 60	100	1	-
to PE	CM	300	1	50 / 60	100	1	-	
BI	E32/EG31	СМ	30	60	50 / 60	100	1	-
	to PE	CM	300	1	50 / 60	100	1	-
BI	E36/EG41	СМ	30	60	50 / 60	100	1	-
	to PE	CM	300	1	50 / 60	100	1	-
BI	E79/EG82	СМ	30	60	50 / 60	100	1	-
to PE	to PE	CM	300	1	50 / 60	100	1	-
BI	BI E50/EG61	СМ	30	60	50 / 60	100	1	-
to PE	to PE	CM	300	1	50 / 60	100	1	-
BI	E86/EG81	СМ	30	60	50 / 60	100	1	-
	to PE	СМ	300	1	50 / 60	100	1	-

¹⁾ Connector E01 – E08 fully tested (50/60 Hz)

²⁾ Short duration tested at Uin= 50 Vdc (set point just above lower threshold).

Observations

No degradation of performance observed.

Requirement

- The object shall comply with acceptance criteria A of IEC 60255-26, Table 23.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

- 118 -

10.12 Voltage dips and voltage interruptions on power supply voltage

Standard and date

Standard	IEC 61850-3, subclause 6.7.3
Basic standard	IEC 61000-4-11 and IEC 61000-4-29
Test date	11 October 2019

DC-power supply input

Characteristic test data

Serial number	Sample A.2, Serial No. TEL-6311-1046
Time	0,1 s
Power supply input	110 - 220 Vdc

Note

Half of the binary outputs were energised during the test.

DC-Voltage dips

Power supply voltage Vdc	Dip %	Residual voltage V	Observations
110	60	44	-
110	30	77	-
220	60	88	-
220	30	154	-

Observations

No degradation of performance observed.

Characteristic test data

Serial number	Sample A.2, Serial No. TEL-6311-1046
Interruption time	0,05 s
Power supply input	110 - 220 Vdc

DC-Voltage interruptions

Power supply voltage Vdc	Interruption %	Impedance	Observations
110	100	High	-
220	100	High	-
110	100	Low	-
220	100	Low	-

Observations

No degradation of performance observed.

- 119 -

AC-power supply input

Characteristic test data	
Serial number	Sample A.2, Serial No. TEL-6311-1046
Dip	30 % 1 cycle
Dip	60 % 50 cycles
Power supply input	110 - 220 Vac

Note

Half of the binary outputs were energised during the test.

AC-voltage dips

Power supply voltage	Dip	Cycles	Residual voltage	Observations
Vac	%		Vac	
110	60	50	44	-
110	30	1	77	-
220	60	50	88	-
220	30	1	154	-

Observations

No degradation of performance observed.

Characteristic test data

Serial number	Sample A.2, Serial No. TEL-6311-1046
Interruption time	100 % 5 cycle/ 50 cycles
Power supply input	110 - 220 Vac

AC-voltage interruptions

<u> </u>			
Power supply voltage	Interruption	Cycles	Observations
Vac	%		
110	100	5 / 50	1
220	100	5 / 50	1

Observations

1. During 50 cycles voltage interrupt duration the EUT restarts. The manufacturer declares the test object is not intended for connection to the public power network. Therefore the result (50 cycles interruption) shall be considered as informative.

Requirement

- The object shall comply with the reliability class 2 of chapter 7.5.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

10.13 Voltage ripple on DC power supply voltage

Standard and date

Standard	IEC 61850-3, subclause 6.15
Basic standard	IEC 61000-4-17
Test date	28 January 2020

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Auxiliary power supply input	110-220 Vdc
voltage	
Auxiliary power supply input	88 – 250 Vdc
voltage range	
Rated power frequency	50 Hz

Power supply voltage	Test frequency	Ripple	See oscillogram on next pages	Observations
Vdc	Hz	V/%		
88	100	11/10	1	-
110	100	11/10	2	-
220	100	22/10	3	-
250	100	22/10	4	-

Observations

No degradation of performance observed.

Requirement

- The object shall comply with the required reliability class 2 of chapter 7.5.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

Oscillogram 1: 88 Vdc at 100 Hz

Oscillogram 2: 110 Vdc at 100 Hz

- 123 -

Oscillogram 3: 220 Vdc at 100 Hz

11 ENERGIZING QUANTITIES

11.1 Burden for AC power supply

Standard and date

Standard	IEC 61850-3, subclause 6.8.1
Test date	28 January 2020

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Number of measurements	5 (issue maximum value)
Rated input energizing voltage	110 - 220 Vac

Power input voltage	Specified maximum burden	Measured maximum burden	Observations
Vac/Vdc / load ¹⁾	VA	VA	
1x PSU: 110 Vac/ 50 % load	50	0,267 A / 110,70 (29,55 VA)	-
1x PSU: 110 Vac/ quiescent load	50	0,203 A/ 112 V (22,73 VA)	-
1x PSU: 220 Vac/ 50 % load	50	0,268 / 220 V (58,96 VA)	1
1x PSU: 220 Vac/ quiescent load	50	0,244 / 220 V (53,68 VA)	1

¹⁾ half of the binary outputs has been energized.

Observations

1. The specified burde of 50 VA has been exceeded. The manufacturer changed the specified burden value to 65 VA (W).

Result

11.2 Burden for DC power supply

Standard and date

Standard	IEC 61850-3, subclause 6.8.2
Test date	29 January 2020

Characteristic test data

Serial number Number of measurements Rated input voltage Sample A.4, Serial No. TEL-6396-1098

5 (issue maximum value) 110-220 Vdc

Power input voltage	Specified	Measured	Observations
Vdc / load	W	W	
1x PSU: 110 Vdc / quiescent load	50	0,144 A ,110 V (15,84 W)	1, 2
1x PSU: 110 Vdc / 50 % load	50	0,220 A ,110 V (24,2 W)	1, 2
2x PSU: 220 Vdc / quiescent load	50	0,075 A, 220 V (16,50 W)	1, 2
2x PSU: 220 Vdc / 50 % load	50	0,110 A, 220 V (24,20 W)	1, 2

Observations

1. The test object meets the initial specified maximum burden requirement.

2. The measured burden (DC) is much lower than the specified burden.

Result

- 128 -

11.3 Inrush current

Standard and date

Standard	IEC 61850-3, subclause 6.8.1.2 and 6.8.2.2
Test date	29 January 2020

Characteristic test data

Serial numbersample A.4, Serial No. TEL-6396-1098Number of measurements5 (issue maximum value)

The rated power supply voltage is; 110 Vdc and 220 Vdc, 110 Vac and 220 Vac The voltage range is: 88 – 250 Vac (110 - 20 % -- 230 + 10%)

Power input voltage	Measured	Measured	Observations
	Peak current	Power up duration	
Vac/Vdc	A	ms	
110 Vdc	63	2,5 - 4	-
220 Vdc	146	2,5	-
110 Vac	4,5	300	1
230 Vac ¹⁾	7,7	1100	1

Note

¹⁾ The rated upper supply voltage is 220 Vac. The measurement however has been performed with a power supply voltage of 230 Vac.

Observations

1. The start-up of the power supply takes much more time when powered with AC.

Result

The results are for information only.

- 129 -

Inrush oscillograms

Inrush graph while powered by 110 Vdc

Inrush and power up duration graph while powered by 110 Vdc. The peak current has not been measured correctly because the amplitude of the signal is out of range.

- 130 -

1070-20

Inrush and power up duration graph while powered by 220 Vdc

Inrush and power up duration graph while powered by 110 Vac

- 131 -

1070-20

Inrush and power up duration graph while powered by 230 Vac

11.4 Burden for binary input

Standard and date

Standard	IEC 61850-3, subclause 6.8.3
Test date	29 January 2020

Characteristic test data

Serial numberSample A.4, Serial No. TEL-6396-1098Number of measurements5 (issue maximum value)Rated input voltage110-220 VdcThe test object has been provided with binary inputs corresponding to option 21/23.

Binary input voltage	Measured Current	Calculated burden	Specified burden	Observations
Vdc	mA	W	W	-
220	2,50	0,55	< 0,6	-
110	1,08	0,12	< 0,15	-
60	0,58	0,035	-	-
48	0,46	0,0022	-	-

Observations

The test object meets the specification for burden of the binary input.

Result

12 CLIMATIC ENVIRONMENT

12.1 Inspection

12.1.1 Pre-inspection

The pre-inspection is performed to verify that the test object is in operational state. The pre-inspection is carried out prior to the test procedure.

The communication with the maintenance computer is verified. Signals are simulated to verify the functioning and operation with the specified performance specification for the following inputs and outputs:

- analogue inputs (CT, VT, sensitive current);
- digital inputs (binary inputs);
- contact outputs (binary outputs);
- timing port (IRIG-B);
- data communication (optical, RS232).

12.1.2 Visual and functional inspection

After each test a visual and functional inspection is carried out as described in this chapter.

The visual inspection is carried out to verify that there is no visual mechanical damage. There shall be no:

- burning of any components;
- paint blisters on any components;
- discolouration on components;
- deformation of modules or components;
- interruptions or damage on interconnecting cables, wires and connectors.

Functional inspection is carried out to verify the correct operation of the test object. There shall be no:

- alarm indications on display and LED's;
- error messages reported in the maintenance computer;
- unintentional change of state of contact outputs;
- unintentional change of state of the binary input inputs;
- loss of timing information;
- there shall be no degradation of performance below the claimed performance according reliability class (1 or 2).

Unless otherwise stated the visual and functional inspection was carried out successfully after each test.

12.3 Climatic environmental tests

12.3.1 Dry-heat test - operational

Standard and date

Standard	IEC 61850-3, subclause 6.9.3.1
Basic standard	IEC 60068-2-2
Test date	8 October 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Type of test	Bd
Operating conditions	energized
Power supply	230 Vac
Relative humidity	< 50 %
Maximum rate of change	1 °C/min over a period of 5 min

Test procedure	Duration of exposure	Operating temperature	Observation
	h	°C	
Powering up after	1	70	-
Correct function at rated load/current	16		-

Observations

No degradation of performance observed.

Requirement

- A dielectric voltage test shall be performed.
- Measurement of insulation resistance should be performed before and after climatic tests and before and after dielectric tests.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class 2 of chapter 7.5.

Result

- 136 -

12.3.2 Cold test - operational

Standard and date

Standard	IEC 61850-3, subclause 6.9.3.2
Basic standard	IEC 60068-2-1
Test date	9 october 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Type of test	Ad
Operating conditions	energized
Power supply	230 Vac
Relative humidity	< 50 %
Maximum rate of change	1 °C/min over a period of 5 min

Test procedure	Duration of exposure h	Operating temperature °C	Observation
Powering up after	1	-20	-
Correct function at rated load/current	16		-

Observations

No degradation of performance observed.

Requirement

- A dielectric voltage test shall be performed.
- Measurement of insulation resistance should be performed before and after climatic tests and before and after dielectric tests.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class {1/2} of chapter 7.5.

Result

12.3.3 Dry-heat test at maximum storage temperature

Standard and date

Standard	IEC 61850-3, subclause 6.9.3.3
Basic standard	IEC 60068-2-2
Test date	10 October 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Type of test	Bb
Operating conditions	non-energized
Power supply	0 V
Relative humidity	< 50 %
Maximum rate of change	1 °C/min over a period of 5 min

Test procedure	Duration of exposure	Operating temperature	Observation
	h	°C	
Storage	16	85	-

Observations

Before and after the test no degration of performance observed.

Requirement

- A dielectric voltage test shall be performed.
- Measurement of insulation resistance should be performed before and after climatic tests and before and after dielectric tests.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

12.3.4 Cold test at minimum storage temperature

Standard and date

Standard	IEC 61850-3, subclause 6.9.3.4
Basic standard	IEC 60068-2-1
Test date	11 October 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Type of test	Ab
Operating conditions	non-energized
Power supply	0 V
Relative humidity	< 50 %
Maximum rate of change	1 °C/min over a period of 5 min

Test procedure	Duration of exposure h	Operating temperature °C	Observations
Storage	16	-40	-

Observations

Before and after the test no degration of performance observed.

Requirement

- A dielectric voltage test shall be performed.
- Measurement of insulation resistance should be performed before and after climatic tests and before and after dielectric tests.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

The object passed the test.

1070-20

12.3.5 Change of temperature test

Standard and date

Standard	IEC 61850-3, subclause 6.9.3.5
Basic standard	IEC 60068-2-14
Test date	22 and 23 October 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Type of test	Nb
Operating conditions	energized
Power supply	230 Vac
Relative humidity	<50 %
Maximum rate of change	1 °C/min
Exposure time t ₁	3 h
Duration of exposure	5 cycles

Test procedure	Exposure time	Duration of exposure	Operating temperature	Observations
	h		°C	
Pre-	1	-	+22	-
conditioning				
Correct	3	5	Min20	-
function				
			Max. 70	-

Observations

No degradation of performance observed.

Requirement

- After the climate tests a dielectric voltage test shall be performed.
- Measurement of insulation resistance should be performed before and after climatic tests and before and after dielectric tests.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class 2 of chapter 7.5.

Result

12.3.6 Damp-heat steady-state test

Standard and date

Standard	IEC 61850-3, subclause 6.9.3.6
Basic standard	IEC 60068-2-78
Test date	11 to 21 October 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047	
Type of test	Cab	
Operating conditions	energized	
Power supply	230 Vac	
Relative humidity	93 %	

Test procedure	Duration of exposure	Operating temperature	Humidity	Observations
	-	°C	%	
Powering up after	1 h	40	93	-
Correct function	10 days	40	93	-

Observations

No degradation of performance observed.

Requirement

- After climate tests a dielectric voltage test shall be performed.
- Measurement of insulation resistance should be performed before and after climatic tests and before and after dielectric tests.
- After the climatic tests a protective bonding resistance test shall be performed.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class 2 of chapter 7.5.

Result

12.3.7 Damp heat cyclic (12 h + 12 h) test

Standard and date

Standard	IEC 61850-3, subclause 6.9.3.7
Basic standard	IEC 60068-2-30
Test date	24 to 30 October 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Type of test	Db
Operating conditions	energized
Power supply	230 Vac

Test procedure	Duration of exposure	Operating temperature	Humidity	Observations
	h	°C	%	
Pre-conditioning	1	25	60	-
Correct function	96	25	93	-
		40	97	-

Observations

No degradation of performance has been observed.

Requirement

- After the climate tests a dielectric voltage test shall be performed.
- Measurement of insulation resistance should be performed before and after climatic tests and before and after dielectric tests.
- After the climatic tests a protective bonding resistance test shall be performed.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class 2 of chapter 7.5.

Result

12.4 Measurement of insulation resistance

Standard and date

Standard	IEC 61850-3, subclause 6.9.2.2
Test date	7 and 30 October 2019

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Test voltage	500 Vdc

Before/after the climatic tests

Test arrangement		Insulation resistance at 500 Vdc	Insulation resistance at 500 Vdc	Observations
Voltage applied to	Tested between	(before the climate test) MΩ	(after the climate test) MΩ	
Power supply	Earth and all others	> 550	> 550	-
BI; E01-E08/common	Earth and all others	> 550	> 550	-
BI; E33-E40/common	Earth and all others	> 550	> 550	-
BI; E73-E80/common	Earth and all others	> 550	> 550	-
BI; E65-E72/common	Earth and all others	> 550	> 550	-
BI; E49-E56/common	Earth and all others	> 550	> 550	-
BO; S01A-S01B	Earth and all others	> 550	> 550	-
BO; S02A-SO2B	Earth and all others	> 550	> 550	-
BO; S03A-SO3B	Earth and all others	> 550	> 550	-
BO; S04A-SO4B	Earth and all others	> 550	> 550	-
BO; \$05A-\$05B	Earth and all others	> 550	> 550	-
BO; S06-S10 In one group	Earth and all others	> 550	> 550	-
BO; S11-S15 In one group	Earth and all others	> 550	> 550	-
BO; S16-S20 In one group	Earth and all others	> 550	> 550	-
A01/A02/A03/A04	Earth and all others	> 550	> 550	-
A05/A06/A07/A08	Earth and all others	> 550	> 550	-
A05	Earth and all others	> 550	> 550	-
A06	Earth and all others	> 550	> 550	-
A07	Earth and all others	> 550	> 550	-

Test arrangement		Insulation resistance at 500 Vdc	Insulation resistance at 500 Vdc	Observations
Voltage applied to	Tested between	(before the climate test) MΩ	(after the climate test) MΩ	
A08	Earth and all others	> 550	> 550	-
VT; VA1/VB1/VC1/VN1 CT; IA11/IA12, IB11/IB12, IC11/IC12 In one group	Earth and all others	> 550	> 550	-
VT; VA2/VB2/VC2/VN2 In one group	Earth and all others	> 550	> 550	-
CT; IA21/IA22, IB21/IB22, IC21/IC22 In one group	Earth and all others	> 550	> 550	-
CT; IA21/IA22	Earth and all others	> 550	> 550	-
CT; IB21/IB22,	Earth and all others	> 550	> 550	-
CT; IC21/IC22	Earth and all others	> 550	> 550	-
IRIG-B port	Earth and all others	> 550	> 550	-

Note

The insulation measurement results after the dielectric strength test can be found in the next paragraph.

Observations

The measured insulation resistance value is well above the required values.

Requirement

- For equipment in a new condition, the insulation resistance shall not be less than 100 MΩ at 500 V d.c. After the damp heat type test, the insulation resistance shall not be less than 10 MΩ at 500 V d.c..
- No visual or functional inspection required.

Result

Dielectric voltage test after climate tests 12.5

Standard and date

Standard	IEC 61850-3, subclause 6.6.4
Test date	30 October 2019

Environmental conditions

Ambient temperature	22 °C	Relative humidity	30 %
Ambient air pressure	999 hPa		

Characteristic test data

Sample A.3, Serial No. TEL-6311-1047

Duration of test

1 min

		1	1	1	1
Test arrangement		Insulation	Voltage applied	Insulation	Observations
		at 500 Vdc		at 500 Vdc	
Voltage	Tested	(before the test)		(after the test)	
applied to	between	MΩ	kVac	MΩ	
Power supply	Earth and all others	> 550	2	> 550	1, 2
BI; E01-	Earth and	> 550	2	> 550	1, 2
	anothers		2		4.2
BI; E33- E40/common	all others	> 550	2	> 550	1, 2
BI; E73- E80/common	Earth and all others	> 550	2	> 550	1, 2
BI; E65- E72/common	Earth and all others	> 550	2	> 550	1, 2
BI; E49- E56/common	Earth and all others	> 550	2	> 550	1, 2
BO; S01A-S01B	Earth and all others	> 550	2	> 550	1, 2
BO; S02A-SO2B	Earth and all others	> 550	2	> 550	1, 2
BO; S03A-SO3B	Earth and all others	> 550	2	> 550	1, 2
BO; S04A-SO4B	Earth and all others	> 550	2	> 550	1, 2
BO; S05A-S05B	Earth and all others	> 550	2	> 550	1, 2
BO; S06-S10 In one group	Earth and all others	> 550	2	> 550	1, 2
BO; S11-S15 In one group	Earth and all others	> 550	2	> 550	1, 2
BO; S16-S20 In one group	Earth and all others	> 550	2	> 550	1, 2
A01/A02/A03/A04	Earth and all others	> 550	2	> 550	1, 2
A05/A06/A07/A08	Earth and all others	> 550	2	> 550	1, 2
A05	Earth and all others	> 550	2	> 550	1, 2
A06	Earth and	> 550	2	> 550	1, 2

Test arrangement		Insulation resistance at 500 Vdc	Voltage applied	Insulation resistance at 500 Vdc	Observations
Voltage applied to	Tested between	(before the test) $M\Omega$	kVac	(after the test) $M\Omega$	
	all others				
A07	Earth and all others	> 550	2	> 550	1, 2
A08	Earth and all others	> 550	2	> 550	1, 2
VT; VA1/VB1/VC1/VN1 CT; IA11/IA12, IB11/IB12, IC11/IC12 In one group	Earth and all others	> 550	2	> 550	1, 2
VT; VA2/VB2/VC2/VN2 In one group	Earth and all others	> 550	2	> 550	1, 2
CT; IA21/IA22, IB21/IB22, IC21/IC22 In one group	Earth and all others	> 550	2	> 550	1, 2
CT; IA21/IA22	Earth and all others	> 550	2	> 550	1, 2
CT; IB21/IB22,	Earth and all others	> 550	2	> 550	1, 2
CT; IC21/IC22	Earth and all others	> 550	2	> 550	1, 2
IRIG-B port	Earth and all others	> 550	0,5	> 550	1, 2

Observations

- 1. No discharge or flashover observed.
- 2. The measured insulation resistance value is well above the required values.

Requirement

- No disruptive discharges or flashovers shall occur.
- For equipment in a new condition, the insulation resistance shall not be less than 100 MΩ at 500 V d.c. After the damp heat type test, the insulation resistance shall not be less than 10 MΩ at 500 V dc.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

12.6 Protective bonding resistance test after damp-heat environmental test

Standard and date

Standard	IEC 61850-3, subclause 6.9.2.4
Test date	30 January 2020

Characteristic test data

Serial number	Sample A.3, Serial No. TEL-6311-1047
Test current	20 A
Test voltage	≤ 12 Vac/Vdc
Duration of test	60 s

Test point	Measured with respect to Terminal	Resistance Ω
Front screw right	PE on the power supply connector	0,009
Front right 19" bracket	PE on the power supply connector	0,009
Front left 19" bracket	PE on the power supply connector	0,009
Earth terminal rear side	PE on the power supply connector	0,009

Observations

The bonding resistance value is well below the 0,1 $\boldsymbol{\Omega}.$

Requirement

- The resistance between the protective conductor terminal and the part under test shall not exceed 0,1 Ω.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

Photograph of test arrangement

13 MECHANICAL ENVIRONMENTAL CONDITION TESTS

13.1 Inspection

13.1.1 Pre-inspection

The pre-inspection is performed to verify that the test object is in operational state. The pre-inspection is carried out prior to the test procedure.

The communication with the maintenance computer is verified. Signals are simulated to verify the functioning and operation with the specified performance specification for the following inputs and outputs:

- analogue inputs (CT, VT, sensitive current);
- digital inputs (binary inputs);
- contact outputs (binary outputs);
- timing port (IRIG-B);
- data communication (optical, RS232).

13.1.2 Visual and functional inspection

After each test a visual and functional inspection is carried out as described in this chapter.

The visual inspection is carried out to verify that there is no visual mechanical damage. There shall be no:

- burning of any components;
- paint blisters on any components;
- discolouration on components;
- deformation of modules or components;
- interruptions or damage on interconnecting cables, wires and connectors.

Functional inspection is carried out to verify the correct operation of the test object. There shall be no:

- alarm indications on display and LED's;
- error messages reported in the maintenance computer;
- unintentional change of state of contact outputs;
- unintentional change of state of the binary input inputs;
- loss of timing information;
- there shall be no degradation of performance below the claimed performance according reliability class (1 or 2).

Unless otherwise stated the visual and functional inspection was carried out successfully after each test.

- 150 -

13.2 Photographs of test arrangement

Test arrangement horizontal longitudinal direction

Test arrangement horizontal transversal direction

Test arrangement vertical direction

13.3 Vibration response test

Standard and date

Standard	IEC 61850-3, subclause 6.10.1
Basic standard	IEC 60255-21-1
Test date	16 to 18 December 2019

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Test object	energized
Auxiliary power supply input	230 Vac
Frequency range	10 to 150 Hz
Displacement	0,035 mm
Acceleration	0,5 g
Number of sweep cycles	1
in each axis	
Number of axis	3

Vibration response test graph

Observations

- During and after the test, the test object was functional.
- No visual damage or functional errors have been found on the test object.

Requirement

- The object shall be subjected to the class 1 or class 2 vibration response test parameters (Table 1) of IEC 60255-21-1.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class 2 of chapter 7.5.

Result

13.4 Vibration endurance test

Standard and date

Standard	IEC 61850-3, subclause 6.10.1
Basic standard	IEC 60255-21-1
Test date	16 to 18 December 2019

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Test object	non-energized
Frequency range	10 to 150 Hz
Acceleration	1 g
Number of sweep cycles	20
in each axis	
Number of axis	3

Vibration endurance test graph

Observation

No visual damage or functional errors have been found on the test object.

Requirement

- The object shall be subjected to the class 1 or 2 of the vibration endurance test parameters (Table 2) of IEC 60255-21-1.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

- 156 -

13.5 Shock response test

Standard and date

Standard	IEC 61850-3, subclause 6.10.2
Basic standard	IEC 60255-21-2
Test date	16 to 18 December 2019

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Test object	energized
Power supply	230 Vac
Acceleration	5 g
Duration of pulses	11 ms
Number of pulses in each axis	6
Number of axis	3

Shock response test graph

Observations

- During and after the test, the test object was functional.
- No visual damage or functional errors have been found on the test object.

Requirement

- The object shall be subjected to the class 1 or 2 of the shock response test parameters (Table I) of IEC 60255-21-2.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class 2 of chapter 7.5.

Result

13.6 Shock withstand test

Standard and date

Standard	IEC 61850-3, subclause 6.10.2
Basic standard	IEC 60255-21-2
Test date	16 to 18 December 2019

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098		
Test object	non-energized		
Acceleration	15 g		
Duration of pulses	11 ms		
Number of pulses in each	6		
axis			
Number of axis	3		

Shock withstand test graph

Observation

No visual damage or functional errors have been found on the test object.

Requirement

- The object shall be subjected to the class 1 or 2 of the shock withstand test parameters (Table II) of IEC 60255-21-2.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

13.7 Bump test

Standard and date

Standard	IEC 61850-3, subclause 6.10.2
Basic standard	IEC 60255-21-2
Test date	16 to 18 December 2019

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098	
Test object	non-energized	
Acceleration	10 g	
Duration of pulses	16 ms	
Number of pulses in each axis	2000	
Number of axis	3	

Bump test graph

Observation

No visual damage or functional errors have been found on the test object.

Requirement

- The object shall be subjected to the class 1 or 2 of the bump test parameters (Table III) of IEC 60255-21-2.
- The visual and functional inspection shall not reveal any defects or malfunctions.

Result

13.8 Single axis sine sweep seismic test

Standard and date

Standard	IEC 61850-3, subclause 6.10.3
Basic standard	IEC 60255-21-2
Test date	16 to 18 December 2019

Characteristic test data

Serial number	Sample A.4, Serial No. TEL-6396-1098
Test object	energized
Power supply input	230 Vac
Frequency range	1 to 35 Hz
Cross-over frequency	8 to 9 Hz
Displacement horizontal axis (x)	3,5 mm
Displacement vertical axis (y)	1,5 mm
Acceleration horizontal axis (x)	1,0 g
Acceleration vertical axis (y)	0,5 g
Number of sweep cycles	1
in each axis	
Number of axis	3

Single axis sine sweep seismic test graph

Observation

No visual damage or functional errors have been found on the test object.

Requirement

- The object shall be subjected to the class 1 or 2 of the seismic vibration test parameters (Table I) of IEC 60255-21-3.
- The visual and functional inspection shall not reveal any defects or malfunctions.
- The object shall comply with the required reliability class 2 of chapter 7.5.

Result

14 ENCLOSURE PROTECTION

Standard and date

Standard	IEC 61850, subclause 6.11
Basic standard	IEC 60529
Test date	20 March 2020

Terminal side	Degree of protection			
	Specification by the manufacturer	Observation		
Front	IP 2X	IP 2X		
Тор ІР 2Х		IP 2X		
Bottom	IP 2X	IP 2X		
Back	IP 2X	IP 2X		
Left	IP 2X	IP 2X		
Right	IP 2X	IP 2X		

Requirement

- The test finger shall not touch hazardous live parts.
- The test finger voltage or energy shall not exceed the safe limits for normal operational use.
- No visual or functional inspection required.

Result

15 PHOTOGRAPHS OF PRINTBOARDS

Photograph of PWR module; RTU194-FUE2

KEMA Labs

Photograph of IO2 module with Fujitsu relays (relay type FTJ2AK024W) ; RTU-GIO

Photograph of IO2 module with Schrack relays (relay type PT571024); RTU-GIO

Photograph of POT2 module; RTU194-POT

Photographs of CPU module; RTU-CPU22

KEMA Labs

KEMA Labs

16 PHOTOGRAPHS OF CHANGES TO THE TEST OBJECT

During the testing period the following changes on the test object were made:

<u>Change 1</u>: the GIO input circuits have been modified to comply with the EMC conducted disturbance inducted by radio-frequency fields immunity requirements.

For compliance, TVS diodes connected to the common return of each digital input block have to be removed and their pads shorted out. The following table shows the reference designator of the components to be removed.

Component	Location
D192	Main board digital input block
D191	Main board digital input block
D291	Daughter board digital input block 1
D292	Daughter board digital input block 1
D390	Daughter board digital input block 2
D391	Daughter board digital input block 2
D490	Daughter board digital input block 3
D491	Daughter board digital input block 3
D590	Daughter board digital input block 4
D591	Daughter board digital input block 4

Below some pictures showing the modification are presented. Notice the red square indicating the removed components, replaced by a short.

Below the PCB design files (for both the main board and daughter board) have been presented to indicate the components to be removed by a short. Notice the red squares:

MAIN BOARD

DAUGHTER BOARD

<u>Change 2</u>: the GIO creepage distances have been increased to comply with the product safety distance creepage requirements. Refer to chapter 9.3.

<u>Change 3</u>; the dimensions of the enclosure have been changed to comply with the dimension requirements for 19" enclosures

<u>Change 4</u>; the ventilation hole size and pattern at the bottom side of the enclosure has been modified to comply with the product safety fire enclose requirements. Refer to chapter 9.8 for detailed information about the modification of the ventilation hole size and pattern.

<u>Change 5</u>; the user manual has been updated to reflect essential technical data according the documentation requirements. Reference to this user manual can be found in chapter 6.

<u>Change 6</u>; the plastic overlays (front and rear) have been modified to comply with the product safety markings requirements.

Front side plastic overlay; warning marking added because the front panel can be opened without use of a tool giving access to hazardous live circuits.

						•
•	EGH E00 E11 E12 E13 E13 E14 E14 E16 E16 E16	E21 E22 E23 E24 E24 E24 E24 E24 E24 E24 E24 E24 E24	E031 E25 E26 E26 E26 E26 E28	E3 E04 E34 E34 E34 E34 E34 E34 E34 E34 E34 E3	E3	
	E001 E01 E02 E03 E04 E00 E00 E00 E00				5000 5104 5100	
•	EG641 E49 E51 E53 E53 E54 E54 E56 E56	E01 E01 E01 E01 E01 E01 E01 E01 E01 E01	EGB1 E665 E665 E669 E700	E7 E664 VV E672 E72	E80 E80	
	E051 E41 E42 E45 E45 E46 E46 E46 E46 E46 E46	A05A A05A A05A A05A A07A A07A A07A A07A	8118 8118 8128 8128 8128 8128		5195 5206 5206	
						N
•						<u>د</u> (۸)
	P	/			_	
	VAI VBI VCI VVI VVI VVI	1814 1812 1014	ė , ,	V82 VC2 VV2 VV2 VV2 VV2 VV2 VV2 VC2 VC2 VC		

Rear side plastic overlay; functional earth and PE markings changed.

17 MEASUREMENT UNCERTAINTY

The used climate rooms and EMC test and measurement equipment are calibrated on an annual base.All the parameters are within the tolerances required by the basic (test/measurement) standards, taking into account the measurement uncertainty reported in the calibration certificates.

18 LIST OF INSTRUMENTS USED

18.1 EMC equipment

Description	Manufacturer	Туре	Inventory nr.
Fast transient burst tester	EM Test	EFT500	105169
Capacitive coupling clamp	EM Test		106168
ESD tester	EM-Test	NX30.1	152004
Test head	EM-Test	CONTACT	152011
Test head	EM-Test	AIT	152012
resistors	EM-Test	2 x 470 k	152013
		2 x 470k	152014
Oscillatory wave test system including	EMC partner	MIG0603OMI	150022
CDN	EMC partner	CDN2000-06-25	150023
CDN-KIT1000 ED.3	EMC partner	CN-U / DN-HF DN-LF1 / DN-LF2	152146
H-field antenna	EMC partner	MF1000-3	151495
Continues wave simulator including	EM Test	CWS500N1.1	151165
50 ohm attenuator	EM Test	ATT 6/75	151158
CDN M1	Luthi	CDN M1	151180
CDN M2/M3	Luthi	CDN M2/M3	151164
CDN M2/M3	Luthi	CDN M2/M3	151179
CDN M4 N	Luthi	CDN M4 N	151160
CDN M4 N	Luthi	CDN M4 N	151178
CDN S9	Luthi	CDN S9	151161
CDN S8 RJ45	Luthi	CDN S8 RJ45	151181
CDN AF2	Luthi	CDN AF2	151162
CDN AF8		CDN AF8	
Injection clamp		EM101	151159
HF absorbing clamp		FTC101	151168
HF absorbing clamp		FTC101	151156
HF absorbing clamp		FTC101	151157
Immunity tester, including	EMC partner	IMU3000	152084
CDN	EMC partner	CDN 3000A-08-32	152089
CDN	EMC partner	PS3-0204	
CDN	EMC partner	CN16	152208
DOW and impulse tester	EMC-partner	DOW3000	152090
Insulation tester	FLUKE	1503	150150
Dielectric 50Hz AC Voltage test	SQS Electronic	HA3300D	105156

Conducted RF emission test equipment			
Description	Manufacturer	Туре	Inventory nr.
Measurement receiver	Rohde &	ESR	151944
	Schwarz		
LISN (AMN)	Rohde &	ENV432	151954
	Schwarz		
LISN (AAN) S8 RJ45	Lüthi	S8 RJ45	151181
Connection cable	Pasternack	PE343-300CM	152430

18.2 Mechanical tests

Description	Manufacturer	Туре	Serial number
ICP Accelerometer	PCB Piezotronics	353B34	173953
Electric-dynamic shaker	Tira	TV59355/AIT-440 TGT model48XXL	036/07
ICP Accelerometer	PCB Piezotronics	353B34	6419
ICP Accelerometer	PCB Piezotronics	353B18	175664
Shaker control system	Dactron	Laser	4816833
Signal conditioner	PCB Piezotronics	482C16	428
Monitoring of the environmental conditions	Novasina	ClimaLog 40	1206059

18.3 Climate tests

Description	Manufacturer	Туре	ORS number
Climate room	Espec	ARS-1100	152503

18.4 Measurement equipment

Description	Manufacturer	Туре	ORS number
Digital multimeter	Hewlett Packard	972A	105257
Oscilloscope	Rohde & Schwarz	RTB2002	152140
Oscilloscope	Rohde & Schwarz	RTB2002	152287
Oscilloscope	Rohde & Schwarz	RTB2004	152142
Current probe	Tektronix	TCP A300&303	151982 151983
EFT Veri1K	EMC Partner	Veri1K EFT	152157
EFT Veri50	EMC Partner	Veri50 EFT	152158
Multimeter	Fluke	8846A	152266
Multimeter	Fluke	8846A	152265
Multimeter	Fluke	8846A	152264
Multimeter	Keysight	34465A	152269
Multimeter	Keysight	34465A	152268
Multimeter	Keysight	34465A	152267
Multimeter 179	Fluke	179	152027
Multimeter	Fluke	179	152028
AC/DC clamp meter	Fluke	353	150336
Current probe	Hioki	3283	150412
Differential probe	Testec	TT-SI9010A	151822
Dielectric analyser	Hypotultra	7854	152281